Mass of metal oxides

FIELD: chemistry.

SUBSTANCE: described is mass of metal oxides, intended as catalyst for heterogeneously-catalysed partial oxidation and/or ammoxidation of at least one saturated and/or unsaturated hydrocarbon, of general stechiometry I MO1VaM1bM2cM3dOn (I), were M1= stands for Te; M2=stands for Nb; M3= stands for at least one of elements from group, which includes Pb, Ni, Co, Bi and Pd; a = 0.05 to 0.6, b= 0.01 to 0.5, c= 0.01 to 0.5, d = 0.0005 to 0.5 and n= equals the number determined by valence and number of different from oxygen elements in (I), whose X-ray diffractogragm has diffraction reflexes h, i and k , whose peaks are at diffraction angles (2Θ) 22.2±0.5° (h), 27.3±0.5° (i) and 28.2±0.5° (k), and - diffraction reflex h in the range of X-ray diffractogram is the most intensive and has peak half-width maximal value 0.5°, intensity Pi of diffraction reflex i and intensity Pk fulfill ratio 0.65≤R≤0.85, in which R is determined by formula R=Pi/(Pi+Pk) intensity ratio, and - half-width of diffraction reflex i and diffraction reflex k each constitute ≤1°, and at least one mass of metal oxides (I) represents such, X-ray diffractogram of which does not have diffraction reflex with peak position 2Θ=50.0±0.3°. Described is mass of metal oxides, which contains equal or more than 80 wt % of at least one mass of metal oxides, indicated above, and whose X-ray diffractogram has diffraction reflex with peak 2Θ=50.0±0.3°.Also described are methods of heterogeneously catalysed partial gas phase oxidation or ammoxidation of at least one saturated or unsaturated hydrocarbon, using as catalytic active mass at least one mass of metal oxides, described above. Described is method of obtaining metal oxides mass by mixing sources of its elementary components, calcination of dry mixture at 350-700°C and washing by organic and/or inorganic acid solution.

EFFECT: increasing target product selectivity.

17 cl, 1 tbl, 16 ex, 17 dwg

 



 

Same patents:

FIELD: chemistry.

SUBSTANCE: present invention pertains to improvement of the method of producing (met)acrylic acid and complex (met)acrylic esters, involving the following stages: (A) reacting propane, propylene or isobutylene and/or (met)acrolein with molecular oxygen or with a gas, containing molecular oxygen through gas-phase catalytic oxidation, obtaining crude (met)acrylic acid; (B) purification of the obtained crude (met)acrylic acid, obtaining a (met)acrylic acid product; and (C) reacting raw (met)acrylic acid with alcohol, obtaining complex (met)acrylic esters, in the event that the installation used in any of the stages (B) and (C), taking place concurrently, stops. The obtained excess crude (met)acrylic acid is temporarily stored in a tank. After restoring operation of the stopped installation, the crude (met)acrylic acid, stored in the tank, is fed into the installation, used in stage (B), and/or into the installation used in stage (C). (Met)acrylic acid output of the installation used in stage (A) should be less than total consumption of (met)acrylic acid by installations used in stages (B) and (C).

EFFECT: the method allows for processing (met)acrylic acid, temporarily stored in a tank, when stage (B) or (C) stops, without considerable change in workload in stage (A).

2 ex

FIELD: chemistry.

SUBSTANCE: present invention pertains to improvement of the method of producing (met)acrylic acid or (met)acrolein using a multi-pipe reactor with a fixed bed. The reactor has several pipes, with at least one catalyst bed in the direction of the axis of the pipe. A heat carrier can regulate temperature outside the flow of the reaction pipe. In the reaction pipes, there is gas-phase catalytic oxidation of at least one type of oxidisable substance, propylene, propane, isobutylene and (met)acrolein by molecular oxygen or a gas, containing molecular oxygen. At the beginning of the process, the difference between the coolant temperature and the peak temperature of the catalyst is set in the interval 20-80°C, and during the process, peak temperature T(°C) of the catalyst in the direction of the axis of the pipe satisfies equation 1, given below: (equation 1), where L, T0, X and X0 stand for length of the reaction pipe, peak temperature of the catalyst in the direction of the axis of the pipe at the beginning of the process, the length up to the position which gives the peak temperature T at the input of the reaction pipe, and the length to the position which gives the peak temperature T0 at the input of the reaction pipe, respectively.

EFFECT: method allows for stable output of the target product, with high output for a long period of time, without reduction of catalyst activity.

3 dwg, 2 ex

FIELD: chemistry.

SUBSTANCE: present invention pertains to perfection of the method of obtaining at least, one product of partial oxidation and/or ammoxidising of propylene, chosen from a group, comprising propylene oxide, acrolein, acrylic acid and acrylonitrile. The starting material is raw propane. a) At the first stage, raw propane, in the presence and/or absence of oxygen, is subjected to homogenous and/or heterogeneous catalysed dehydrogenation and/or oxydehydrogenation. Gas mixture 1, containing propane and propylene is obtained. b) If necessary, a certain quantity of the other components in gas mixture 1, obtained in the first stage, besides propane and propylene, such as hydrogen and carbon monoxide is separated and/or converted to other compounds, such as water and carbon dioxide. From gas mixture 1, gas mixture 1' is obtained, containing propane and propylene, as well as other compounds, besides oxygen, propane and propylene. c) At the third stage, gas mixture 1 and/or gas mixture 1' as a component, containing molecular oxygen, of gas mixture 2, is subjected to heterogeneous catalysed partial gas-phase oxidation and/or propylene, contained in gas mixture 1 and/or gas mixture 1', undergoes partial gas-phase ammoxidising. Content of butane-1 in gas mixture 2 is ≤1 vol.%. The method increases output of desired products and efficiency of the process.

EFFECT: increased output of desired products and efficiency of the process.

72 cl, 10 ex

FIELD: chemistry.

SUBSTANCE: catalytic composition contains compounds of formula: Mo1VaSbbNbcMdOx, in which Mo represents molybdenum, V stands for vanadium, Sb stands for antimony, Nb stands for niobium, M represents gallium, a constitutes from 0.01 to 1, b constitutes from 0.01 to 1, c constitutes from 0.01 to 1, d constitutes from 0.01 to 1, and x is determined by requirements of valency of other present elements.

EFFECT: increase of alkane conversion degree, increase of selectivity of catalytic composition in one stage process of alkane transformation into unsaturated carbonic acid.

9 cl, 1 tbl, 12 ex

FIELD: chemistry.

SUBSTANCE: reaction of alkene with molecular oxygen is carried out in reactor with pseudoliquefied layer in presence of catalytically active pseudoliquefied layer of solid particles, which lies in the following: gas, containing molecular oxygen, concentration of oxygen in which exceeds its concentration in air, is introduced into pseudoliquefied layer simultaneously supporting turbulent mode in pseudoliquefied layer. Invention also relates to method of obtaining vinylacetate by reaction of ethylene and acetic acid with molecular oxygen in reactor with pseudoliquefied layer in presence of catalytically active pseudoliquefied layer of solid particles, which have diameter in range from 20 to 300 mcm, distribution according to particle diameter constitutes at least 20 mcm; at to method of carrying out reaction of molecular oxygen with ethane, ethylene or their mixture obtaining acetic acid and optionally ethylene in reactor with pseudoliquefied layer in presence of catalytically active pseudoliquefied layer of solid particles.

EFFECT: elaboration of safer method of carrying out reaction.

45 cl, 2 tbl, 3 ex,4 dwg

FIELD: chemistry.

SUBSTANCE: invention concerns improved method for obtaining (meth)acrylic acid involving steam phase catalytic oxidation of propylene, propane or isobutylene for production of reaction mix, absorption of oxidised reaction product in water to obtain water solution containing (meth)acrylic acid, concentration of water solution in the presence of azeotropic agent and distillation of obtained (meth)acrylic acid in distillation column to obtaining purified (meth)acrylic acid. During operation of distillation column, including operation interruption and resumption, the column is washed with water, and afterwards azeotropic distillation is performed in the presence of azeotropic agent.

EFFECT: efficient and fast cleaning of distillation column with extraction of valuable substance.

5 cl, 5 dwg, 3 ex

FIELD: heating.

SUBSTANCE: invention concerns improved method of catalytic oxidation in vapour phase which supplies effective removing of reactionary heat, excludes hot spot formation, and supplies effective receipt of base product. Method of catalytic oxidation is disclosed in the vapour phase (a) of propylene, propane or isobutene by the instrumentality of molecular oxygen for receiving (meth)acrolein, and/or oxidation (b) of (meth)acrolein by molecular oxygen for receiving (meth)acryl acid, by the instrumentality of multiple-tubular reactor, contained: cylindrical reactor vessel, outfitted by initial material supply inlet hole and discharge hole for product, variety of reactor coolant pipes, located around the cylindrical reactor vessel and used for insertion the heat carrier into cylindrical reactor vessel or for removing the heat carrier from it, circulator for connection of variety loop pipeline to each other, variety of reaction tube, mounted by the instrumentality of tube reactor lattices, with catalyst. Also multiple-tubular reactor contains: variety of partitions, located lengthways of reaction tubes and used for changing heat carrier direction, inserted into reactor vessel. According to this heat carrier coolant flow is analysed and there are defined zones in reactor which have heat-transfer coefficient of heat carrier less than 1000 W/(m2·K); also reaction of catalytic oxidation is averted in the vapour phase in mentioned zones of reactor and reaction of catalytic oxidation is implemented in the vapour phase in reactor.

EFFECT: receiving of improved method catalytic oxidation in vapour phase which supplies effective removing of reactionary heat, excludes hot spot formation, and supplies effective receipt of base product.

3 cl, 6 dwg, 2 ex

FIELD: chemistry.

SUBSTANCE: invention relates to method of oxidising alkane from C2 to C4 with the obtaining of corresponding alkene and carboxylic acids. The method includes the following stages: (a) contact in the oxidation reaction zone of the alkane, which contains molecular oxygen gas, not necessarily corresponding to the alkene and not necessarily water in the presence of at least one catalyst, effective with the oxidation of the alkane to the corresponding alkene and carboxylic acid, alkane, oxygen and water; (b) separation in the first separating agent at least part of the first stream of products in a gaseous stream, which includes alkene, alkane and oxygen, and a liquid stream, which includes carboxylic acid; (c) contact of the mentioned gaseous stream with the solution of a salt of metal, capable of selectively chemically absorbing alkene, with the formation of a liquid stream rich in chemically absorbed alkene; (d) isolation from the flow of the solution of salt of the metal. The invention also relates to combined methods of obtaining alkyl-carboxylate or alkenyl-carboxylate (for example vinyl acetate), moreover these methods include oxidising of alkane from C2 to C4 with the obtaining of corresponding alkene and carboxylic acid, isolation of alkene from the mixture of alkene, alkane and oxygen by absorption using the solution of the salt of metal and extraction of the stream rich in alkene from the solution of the salt from metal for using when obtaining alkyl-carboxylate and alkenyl-carboxylate.

EFFECT: improved method of oxidising alkane from C2 to C4 with the obtaining of corresponding alkene and carboxylic acids.

46 cl, 1 dwg

FIELD: industrial organic synthesis.

SUBSTANCE: invention relates to a process for production of C2-C4-alkane into alkene and carboxylic acid and immediately using them in ester synthesis stage. According to invention, to produce alkyl carboxylate, in particular ethyl acetate, or alkenyl carboxylate, in particular vinyl acetate, stage wherein alkane is oxidized to corresponding alkene and carboxylic acid is combined with alkenyl carboxylate or alkyl carboxylate production stage. Process comprises contacting of alkane- and alkene-containing gas raw material with molecular oxygen and catalyst in the first oxidation reaction zone, catalyst being efficient in oxidation of alkane into corresponding alkene and carboxylic acid. In the second reaction zone, part of streams isolated in separation stage and enriched with alkene and carboxylic acid is brought into contact with at least one catalyst efficient to produce either alkyl carboxylate or alkenyl carboxylate in presence of oxygen-containing gas. For example, first product stream consists of ethylene and acetic acid with water admixture. In the second reaction zone, stream enriched with alkene and carboxylic acid comes into contact with oxygen, optionally in presence of additional amount of ethylene and/or acetic acid from the first product stream. As a result, second product stream comprising vinyl acetate, water, acetic acid, and optionally small amounts of carbon oxides is obtained. Second product stream is separated into fractions containing vinyl acetate and acetic acid, which are subjected to further purification. In a cycle wherein acetic acid from main fraction is regenerated, the latter is recycled to vinyl acetate stage in the second reaction zone.

EFFECT: improved economical efficiency of process.

36 cl, 1 dwg

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to an improved method for synthesis of acrolein or acrylic acid or their mixture. Method involves at step (A) propane is subjected for partial heterogenous catalyzed dehydrogenation in gaseous phase to form a gaseous mixture A of product comprising molecular hydrogen, propylene, unconverted propane and components distinct from propane and propene, and then from a gaseous mixture of product from step (A) distinct from propane and propylene at least partial amount of molecular hydrogen is isolated and a mixture obtained after this isolation is used as a gaseous mixture A' at the second step (B) for loading at least into one oxidation reactor and in at least one oxidation reaction propylene is subjected for selective heterogenous catalyzed gas-phase partial oxidation with molecular oxygen to yield as the end product of gaseous mixture B containing acrolein or acrylic acid, or their mixture, and the third (C) wherein in limits of partial oxidation of propylene at step (B) of gaseous mixture B acrolein or acrylic acid or their mixtures as the end product are separated and at least unconverted propane containing in gaseous mixture at step (B) is recovered to the dehydrogenation step (A) wherein in limits of partial oxidation of propylene at step (B) molecular nitrogen is used as additional diluting gas. Method provides significant decreasing of by-side products.

EFFECT: improved method of synthesis.

39 cl, 11 ex

FIELD: chemistry.

SUBSTANCE: invention concerns improved method of obtaining at least one product of partial propylene oxidation and/or ammoxidation, propylene selected out of group including propyleneoxide, acrolein, acrylic acid and acrylnitryl, where source substance is propane. Method involves a) at the first stage, homogeneous and/or heterogeneous catalysed dehydration and/or oxydehydration of raw propane in the presence and/or in the absence of oxygen, to obtain gas mix containing propane and propylene; and b) if required, separation of part gas mix 1 obtained at the first stage and its components other than propane and propylene, such as hydrogen, carbon monoxide, or transformation of this part in the other compounds, such as water, carbon dioxide, so that gas mix 1' containing propane and propylene and compounds other than oxygen, propane and propylene is obtained from gas mix 1; and at least one more stage c) heterogeneous catalysed ammoxidation and/or partial gas phase ammoxidation of propylene containing in gas mix 1 and/or gas mix 1' in gas mix 1 or gas mix 1' containing molecular oxygen of gas mix 2, where total C4-hydrocarbon content in gas mix 2 is < 3 volume %.

EFFECT: reduced process performance due to reduced output of target product and enhanced selectivity of carbon oxide generation at the second process stage.

50 cl, 10 ex

FIELD: chemistry.

SUBSTANCE: mixed metal oxide catalyst based on antimonite in a catalytic active oxidation state has the empirical formula: MeaSbbXcQdReOf, where Me is at least one element from the group: Fe, Co, Ni, Sn, U, Cr, Cu, Mn, Ti, Th, Ce, Pr, Sm, or Nd; X is at least one element from the group: V, Mo, or W; Q is at least one element from the group: Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Nb, Ta, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Pb, As, or Se; R is at least one element from the group: Bi, B, P, or Te; and the indices a, b, c, d, e and f denote atomic ratios: a has a value from 0.1 to 15; b has a value from 1 to 100; c has a value from 0 to 20; d has a value from 0 to 20; e has a value from 0 to 10 and f is a number, taken to fulfill the valency requirements of the metals answering for the oxidation degree they have in the composition of the catalyst. Method of obtaining such a catalyst includes the following stages. At first they are subjected to aqueous suspension of Sb2O3 with HNO3 and with one or more compounds of Me, and voluntarily with one or more compounds from the groups: X, Q or R, for obtaining the first mixture (a). The first mixture is then heated and dried to form a solid product (b). After this the solid product is calcinated forming the catalyst. The particular metal oxide catalyst based on antimonite in the catalytic active oxidation state as per the invention has the empirical formula: Ua'FeaSbbMocBieOf, where the indices a, a', b, c, e and f denote atomic ratios: a has a value from 0.1 to 5; a' has a value from 0.1 to 5; b has a value from 1 to 10; c has a value from 0.001 to 0.2; e has a value from 0.001 to 0.2; and f is a number, taken to fulfill the valency requirements of Sb, U, Fe, Bi, and Mo, answering for the oxidation degree they have in the composition of the catalyst. Method of obtaining such a catalyst includes the following stages. At first they are subjected to aqueous suspension of Sb2O3 with HNO3, oxides or nitrates of bismuth and oxides or nitrates of uranium to form the first mixture (a). The first mixture is then heated under temperature and in a period of time, enough for the induction of the process for the formation of the antimonic oxide crystals and formation of the second mixture (b). An aqueous solution of a ferric compound iss then added to the second mixture for the formation of a third mixture (c). The pH of the third mixture is regulated in the range of 7 - 8.5, a precipitate of a hydrated mixture of oxides in the aqueous phase is formed (d). The precipitate is separated from the aqueous phase (e). An aqueous suspension of precipitate components of hydrated mixed oxides is obtained (f). Molybdate is added to the suspension component of hydrated mixed oxides (g). A suspension of hydrated mixed oxides of Molybdate component in the form of dy particles is formed (h). Later the calcination of the dry particles with the formation of the catalyst is carried out (i).

EFFECT: increase in the activity and selectivity of the catalyst.

30 cl, 2 tbl, 7 ex

FIELD: chemistry.

SUBSTANCE: the scope of invention covers economically feasible methods of isolation and purification of valuable nitrogen-containing organic compounds obtained by catalytic ammoxidation of at least one original compound selected from the group consisting of propane, propylene, isobutane and isobutylene in the presence of ammonia with production of gaseous product. The methods described in invention include cooling of gas flow leaving reactor with water-containing liquid coolant; production of water solution containing relevant unsaturated mononitrile, hydrocyanic acid and other organic products; and application of integrated sequence of distillations and phase separations to isolate for recycling useful water-containing liquid and production of desired nitrogen-containing products.

EFFECT: maintenance of effective quantity to inhibit polymerisation.

30 cl, 1 dwg, 3 ex

FIELD: chemical industry; petrochemical industry; methods (versions) of the ammoxidation of the carboxylic acids in the mixture of nitriles.

SUBSTANCE: the invention is pertaining to the methods (versions) of the ammoxidation or to the method of increasing of the yield of the acetonitrile in the form of the by-product produced in the process of manufacture of acrylonitrile, which provide for injection of the reactants, which contain at least one hydrocarbon selected from the group, which includes propylene and the propane, at least one С1-С4 carboxylic acid, ammonia and the gas containing the molecular oxygen, into the reaction zone containing the catalyst of the ammoxidation, and realization of the reaction of the indicated reactants above the indicated catalyst at the heightened temperature with production of the yield, which contains acrylonitrile, hydrogen cyanide and acetonitrile. The method may additionally include the contact of the effluent of the reaction zone with the liquid of extinguishing, which contains the water and at least one С14 carboxylic acid, and the addition of at least a part of the extinguishing liquid into the reaction zone after the extinguishing liquid contacting the liquid of the reaction zone. The invention allows to increase the yield and, predominantly, the ratio of the by-product - acetonitrile to the acrylonitrile produced in the process of the ammoxidation of the hydrocarbon, such as propylene or propane into acrylonitrile.

EFFECT: the ensures the increased yield and the ratio of the by-product - acetonitrile to the acrylonitrile produced in the process of the ammoxidation of the hydrocarbon, such as propylene or propane into acrylonitrile.

22 cl, 1 tbl, 1 ex

The invention relates to an improved method for the recovery and regeneration of unreacted ammonia from the resulting stream containing Acrylonitrile or Methacrylonitrile derived from the reaction zone, where oxygen, ammonia and a hydrocarbon selected from the group consisting of propane and isobutane, interact in a reactor in the presence of a fluidized bed of ammoxidation catalyst at elevated temperature to obtain the corresponding unsaturated nitrile cooling discharge flow from the fluidized bed reactor containing the corresponding nitrile and unreacted ammonia from the first aqueous solution of ammonium phosphate, in which the ratio of ammonium ions (NH+4) to phosphate ions (PO-34) is from about 0.7 to about 1.3, to absorb essentially all of the unreacted ammonia present in stemming the flow reactor for the formation of the second aqueous solution of ammonium phosphate, richer ammonium ions than the first solution, heating the second aqueous solution of ammonium phosphate to elevated temperature sufficient to reduce the amount of ammonium ions in the second solution to essentially the same level present in n the th ammonia, in a fluidized bed reactor

The invention relates to a method for producing olefin-unsaturated NITRILES by the reaction of lower alkanes or alkenes with oxygen and ammonia in the gas phase in the presence of water vapor and a suitable catalyst at elevated temperature in the ammoxidation reactor with the formation at the exit of the hot gaseous stream comprising nitrile, unreacted reagents and by-products, followed by passing hot gaseous flow through the reverse jet scrubber, in which the hot gaseous stream is rapidly cooled, as a result of its contact with the cooling liquid injected countercurrent to the direction of movement of the specified gas flow, with the removal of ammonia, when this gaseous stream is passed through a reverse jet scrubber provided with such a speed that allows you to change to reverse the direction of flow of the injected coolant by evaporation of a part of the injected coolant

The invention relates to catalysts for the selective decomposition of N2About in a mixture of nitrous gases

The invention relates to an improved catalytic method for the ammoxidation of lower paraffins to obtain unsaturated mononitriles, such as Acrylonitrile and Methacrylonitrile

FIELD: chemistry.

SUBSTANCE: mixed metal oxide catalyst based on antimonite in a catalytic active oxidation state has the empirical formula: MeaSbbXcQdReOf, where Me is at least one element from the group: Fe, Co, Ni, Sn, U, Cr, Cu, Mn, Ti, Th, Ce, Pr, Sm, or Nd; X is at least one element from the group: V, Mo, or W; Q is at least one element from the group: Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Nb, Ta, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Pb, As, or Se; R is at least one element from the group: Bi, B, P, or Te; and the indices a, b, c, d, e and f denote atomic ratios: a has a value from 0.1 to 15; b has a value from 1 to 100; c has a value from 0 to 20; d has a value from 0 to 20; e has a value from 0 to 10 and f is a number, taken to fulfill the valency requirements of the metals answering for the oxidation degree they have in the composition of the catalyst. Method of obtaining such a catalyst includes the following stages. At first they are subjected to aqueous suspension of Sb2O3 with HNO3 and with one or more compounds of Me, and voluntarily with one or more compounds from the groups: X, Q or R, for obtaining the first mixture (a). The first mixture is then heated and dried to form a solid product (b). After this the solid product is calcinated forming the catalyst. The particular metal oxide catalyst based on antimonite in the catalytic active oxidation state as per the invention has the empirical formula: Ua'FeaSbbMocBieOf, where the indices a, a', b, c, e and f denote atomic ratios: a has a value from 0.1 to 5; a' has a value from 0.1 to 5; b has a value from 1 to 10; c has a value from 0.001 to 0.2; e has a value from 0.001 to 0.2; and f is a number, taken to fulfill the valency requirements of Sb, U, Fe, Bi, and Mo, answering for the oxidation degree they have in the composition of the catalyst. Method of obtaining such a catalyst includes the following stages. At first they are subjected to aqueous suspension of Sb2O3 with HNO3, oxides or nitrates of bismuth and oxides or nitrates of uranium to form the first mixture (a). The first mixture is then heated under temperature and in a period of time, enough for the induction of the process for the formation of the antimonic oxide crystals and formation of the second mixture (b). An aqueous solution of a ferric compound iss then added to the second mixture for the formation of a third mixture (c). The pH of the third mixture is regulated in the range of 7 - 8.5, a precipitate of a hydrated mixture of oxides in the aqueous phase is formed (d). The precipitate is separated from the aqueous phase (e). An aqueous suspension of precipitate components of hydrated mixed oxides is obtained (f). Molybdate is added to the suspension component of hydrated mixed oxides (g). A suspension of hydrated mixed oxides of Molybdate component in the form of dy particles is formed (h). Later the calcination of the dry particles with the formation of the catalyst is carried out (i).

EFFECT: increase in the activity and selectivity of the catalyst.

30 cl, 2 tbl, 7 ex

Up!