Method of photoresist removal

FIELD: electrics.

SUBSTANCE: method of photoresist removal involves photoresist film etching from silicon plates by processing in etching agent containing acetone and dimethylformamide. Photoresist film etching is performed at the following component ratio: acetone (CH3COOCH3) to dimethylformamide ((CH3)2NCOH), as 2:1 respectively at room temperature for 21 minutes. Cleaning control is performed in focused light beam, with luminescent point number not exceeding 5.

EFFECT: complete removal of photoresist, lower operation temperature, reduced etching duration.

 

The invention relates to a technology of manufacturing of the power transistor, in particular to the removal of the photoresist with polyimide in the process of forming a protective film of polyimide patterns powerful transistor.

Known organic solvents for removal of photoresist: dimethylformamide, trichloroethylene, and others [1].

The main drawback of these methods is incomplete removal of the photoresist, residue, high temperature, duration of the process.

The technical result of the invention is the complete removal of the photoresist, the temperature reduction process and reducing the time of etching.

The technical result is achieved by the use of provide the Etchant, which consists of the following main components acetone and dimethylformamide in a ratio of 2:1.

The essence of the method lies in the fact that when the etching of the photoresist is complete removal of photoresist from the surface of silicon wafers by adding acetone in dimethylformamide, which is carried out at low temperatures, and at the same time, removal of the photoresist film is reduced. Summary of the invention the following examples.

EXAMPLE 1. The process carried out at the facility chemical processing, metal baths, followed by washing in deionized water at a ratio of component (acetone and dimethylformamide):

The provide the Etchant temperature of 705C., the etching time of 51 minutes

Control cleaning is performed under a focused beam of light, the number of luminous points not more than 10 pieces.

EXAMPLE 2. The method is carried out analogously to example 1. The process is carried out at a ratio of components:

The provide the Etchant temperature of 605C., the etching time of 41 minutes

Control cleaning is performed under a focused beam of light, the number of luminous points is not more than 8 pieces.

EXAMPLE 3. The method is carried out analogously to example 1. The process is carried out at a ratio of components:

The temperature of provide the Etchant room, the etching time 21 minutes

Control cleaning is performed under a focused beam of light, the number of luminous points is not more than 5 pieces.

EXAMPLE 4. The method is carried out analogously to example 1. The process is carried out at a ratio of components:

The provide the Etchant temperature of 505C., the etching time of 11 minutes

Control cleaning is performed under a focused beam of light, the number of luminous points is more than 5 pieces.

Thus, the claimed method is compared with the prototype provides a complete removal of the photoresist at a lower temperature and with less time of etching.

Sources of information

1. ZUG the tra. Technology microelectronic devices. M., "Radio and communications, 1991, str-353.

The method of removing the photoresist, comprising etching the film of photoresist from silicon wafers by processing provide the Etchant consisting of acetone, and dimethylformamide, characterized in that the etching of the photoresist film is performed at a ratio of components: acetone (CH3SOON3) and dimethylformamide ((CH3)2NCOH), respectively 2:1 at room temperature and the time of etching 21 min, while monitoring the cleaning is performed under a focused beam of light, the number of luminous points is not more than 5 pieces.



 

Same patents:

FIELD: electrical engineering.

SUBSTANCE: semiconductor wafer intended for application in solar plants, in which uniform and fine structure of irregularities in the form of pyramid is provided evenly within the limits of its surface, and etching solution for generation of semiconductor wafer that has uniform and fine structure of irregularities. Semiconductor is etched with application of alkaline etching solution, which contains at least one type selected from the group that consists of carbonic acids, which have carbon number of 1-12 and have at least one carboxyl group in molecule, and their salts, so that in this manner structure of irregularities is formed on the surface of semiconductor surface.

EFFECT: safe and efficient method for manufacture of semiconductor wafer, which has perfect efficiency of photoelectric conversion, in which fine structure of irregularities suitable for application in solar element may be uniformly shaped with required size on the surface of semiconductor wafer.

12 cl, 16 dwg, 10 tbl

FIELD: processes, etching.

SUBSTANCE: usage: for receiving structures by means of plasma etching process through the mask. Concept of the invention: etching method of layer above support through the mask provides cyclic process of gases modulation during more then three cycles. Each cycle contains stage of protective layer formation operation implementation with usage of the first gaseous reagent with initial gaseous reagent, duration of which is preliminary 0.0055-7 seconds for each cycle, and stage of etching operation implementation for etching of device feature through the mask for etching of the second gaseous reagent using reactive gaseous reagent - etchant, duration of which is preliminary 0.005-14 seconds for each cycle. Protective layer formation operation contains stage of initial gas feeding and stage of plasma formation from initial gas. Each etching operation contains stage of reactive gas - etchant feeding and stage of plasma formation from reactive gas - etchant.

EFFECT: providing of regulation ability of critical dimensions during etching.

35 cl, 10 dwg

FIELD: instrument making.

SUBSTANCE: system for processing solid state devices incorporates head to feed processing fluid onto and withdraw it from the substrate surface, the head approaching the substrate surface to make certain gap there between. The system incorporates the first channel feeding, through the channel, the first fluid medium and the second channel for the second fluid medium, other than the first one, to be fed onto the substrate. The system comprises also the third channel to remove the aforesaid first and second fluids from the substrate surface, the channel being operated at a time with the two channels. The application describes also the method, the device and the head to the effect.

EFFECT: fast and efficient cleaning and drying of solid state substrates along with reducing traces of dirt being formed thereon.

27 cl, 21 dwg

FIELD: technological processes.

SUBSTANCE: invention concerns selective membrane production for molecular gas mix filtering and can be applied in compact fuel cells. Method of gas-permeable membrane production includes vacuum sputtering of a metal displaying chemical stability in concentrated hydrogen fluoride solutions in anode polarisation conditions onto monocrystalline silicon plate in closed pattern, and further double-side electrochemical etching of the plate area limited by the mentioned closed pattern. Etching process is performed until its spontaneous cease determined by break of time function curve of anode current on the plate surface not covered by sputtered metal.

EFFECT: increased thickness homogeneity of solid monocrystalline filtering silicon layer, improved membrane durability at higher gas permeability.

31 cl, 9 dwg, 2 ex

FIELD: physics.

SUBSTANCE: invention is related to the field of manufacture of micromechanical devices, namely to methods of formation of scanning probe microscope probes, in particular, cantilevers consisting of console and needle. In method of cantilever manufacture that includes formation of KDB on top surface of single-crystal silicic wafer with orientation (100) of cantilever needle by method of local anisotropic etching of silicon, formation of p-n transition on top side of wafer, local electrochemical etching of wafer from the back side to p-n transition with creation of silicic membrane, formation of cantilever console from the saidmembrane by means of local anisotropic etching of membrane from both sides of plate with application of mask that protects needle and top part of console, needle of cantilever is formed prior to formation of p-n transition. Depth of n-layer amounts to doubled thickness of console, and mask for local anisotropic etching of membrane is received by method of lift-off lithography with application of bottom "sacrificial" layer and top masking layer from chemically low-activity metal.

EFFECT: obtaining of cantilever with reproduced geometric parameters of console and higher resolution of needle.

3 cl, 15 dwg

FIELD: physics; electricity.

SUBSTANCE: etching system contains plasma-generating facilities for plasma generating in vacuum chamber, high-frequency displacement voltage source, supplying high-frequency displacement voltage to electrode-substrate, floating electrode opposite to electrode-substrate in vacuum chamber and supported in floating condition by electric potential, solid material placed on the side of the floating electrode directed to electrode-substrate to form film layer protecting from etching, and control unit for periodic supply of high-frequency voltage to floating electrode. Etching method includes repetition, in specified sequence, of substrate etching stage by means of etching gas supplied to vacuum chamber, and film layer formation stage protecting substrate from etching by sputtering of solid material opposite to substrate.

EFFECT: high etching selectivity when using mask as well as production of anisotropic profile and great etching depth.

22 cl, 7 dwg

FIELD: chemistry.

SUBSTANCE: invention pertains to compositions used for treating surfaces and the method of treating the surface of a substrate, using such a composition. The essence of the invention is that, the cleaning solution contains water, hydrogen peroxide, an alkaline compound and 2,2-bis-(hydroxyethyl)-(iminotris)-(hydroxymethyl)methane as a chelating additive. The alkaline compound is preferably chosen from a group containing an organic base, ammonia, ammonium hydroxide, tetramethylammonium hydroxide, and most preferably from a group containing ammonia and ammonium hydroxide. Content of the chelating additive is 1000-3000 ppm. The cleaning solutions are used for the process of treating the surface, including cleaning, etching, polishing, and film-formation, for cleaning substrates, made from semiconductor, metal, glass, ceramic, plastic, magnetic material, and superconductors. The method involves treatment of semiconductor substrate(s) using a cleaning solution and drying the given semiconductor substrate(s) after washing in water.

EFFECT: increased stability of the solution at high temperature and increased degree of purification of surfaces.

3 cl, 2 tbl, 15 dwg, 3 ex

FIELD: methods for manufacture of semi-conductor instruments and microcircuit chips.

SUBSTANCE: method and system are suggested for treatment of base plates for treatment of semi-conductor instruments with creation of liquid meniscus that is shifted from the first surface to the parallel second one, which is installed nearby. System and method suggested in invention may also be used for meniscus shift along base plate edge.

EFFECT: invention provides efficient cleaning and drying of surfaces and edges of semi-conductor plates, with simultaneous reduction of quantity of water or washing liquid drops that are accumulated on plate surface, which leave dirty traces on plate surface and edge after evaporation.

20 cl, 20 dwg

FIELD: electric engineering.

SUBSTANCE: invention relates to electric engineering equipment and may be used for application of coatings by electrochemical process. The device for one-side treatment of semiconductor plates comprises a galvanic bath with anode and a substrate holder with a set of electrode conducting contacts and support posts whereto a semiconductor plate is pressed. The device incorporates additionally a horizontal support frame with an angular flange and three needle-type stops with ring-like marks, the substrate holder being provided with a guiding angular recess and mounted on the support frame flange. Also, the device comprises the current source control unit and a system of forced mixing of electrolyte made up of a magnetic mixer with a shielding plate.

EFFECT: increased quality of galvanic treatment of semiconductor plates, simpler design of the device.

5 dwg

FIELD: semiconductor engineering; chemical treatment of single-crystalline silicon wafer surfaces chemically resistant to open air and suited to growing epitaxial semiconductor films.

SUBSTANCE: proposed method for treatment of single-crystalline silicon wafer surface positioned on Si(100) or Si(111) plane includes cleaning of mentioned surface followed by passivation with hydrogen atoms. Silicon surface is first cleaned twice by means of boiling trichloroethylene solution for 10-20 minutes involving washing with deionized water and then with ammonium-peroxide aqueous solution of following composition: 5 volumes of H2O, 1 volume of 30% H2O2, 1 volume of 25% NH4OH at 75-82 °C or with salt-peroxide aqueous solution of following composition: 6 volumes of H2O, 1 volume of 30% H2O2, 1 volume of 37% HCl at 75-82 °C, followed by three 5- or 10-minute steps of washing with deionized water; passivation with hydrogen atoms is conducted by treatment first with 5-10 mass percent HF solution and then with aqueous solution of NH4OH and NH4F mixture at pH = 7.6-7.7 for 40-60 s followed by washing with deionized water and drying out under normal conditions.

EFFECT: ability of producing wafers capable of retaining their serviceability for long time in storage and in transit, in open air, without oxidizing their surfaces.

1 cl, 3 dwg

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for purifying octafluorocyclobutane. Method is carried out by interaction of crude octafluorocyclobutane containing impurities with the impurity-decomposing agent at increased temperature and then with adsorbent that is able to eliminate indicated impurities up to the content less 0.0001 wt.-% from the mentioned crude octafluorocyclobutane. Impurity-decomposing agent comprises ferric (III) oxide and compound of alkaline-earth metal in the amount from 5 to 40 wt.-% of ferric oxide and from 60 to 95 wt.-% of compound of alkaline-earth metal as measured for the complete mass of the impurity-decomposing agent. Ferric (III) oxide represents γ-form of iron hydroxyoxide and/or γ-form of ferric (III) oxide. Impurity represents at least one fluorocarbon taken among the group consisting of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane, 1-chloro-1,1,2,2,3,3,3-heptafluoropropane, 1-chloro-1,1,2,2,3,3,3-heptafluoropropane, 1-chloro-1,2,2,2-tetrafluoroethane, 1-chloro-1,1,2,2-tetrafluoroethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, hexafluoropropene and 1H-heptafluoropropane. Adsorbent represents at least one of representatives taken among the group including activated carbon, carbon molecular sieves and activated coal. Crude octafluorocyclobutane interacts with the mentioned impurity-decomposing agent at temperature from 250oC to 380oC. Invention proposes gas, etching gas and purifying gas including octafluorocyclobutane with purity degree 99.9999 wt.-% and above and comprising fluorocarbon impurity in the concentration less 0.0001 wt.-%. Invention provides enhancing purity of octafluorocyclobutane.

EFFECT: improved purifying method.

26 cl, 13 tbl, 10 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for purifying octafluoropropane. Method is carried out by interaction of crude octafluoropropane comprising impurities with the impurity-decomposing agent at increased temperature and then with adsorbent that are able to remove indicated impurities up to the content less 0.0001 wt.-% from indicated crude octafluoropropane. The impurity-decomposing agent comprises ferric (III) oxide and compound of alkaline-earth metal in the amount from 5 to 40 wt.-% of ferric oxide and from 60 to 95 wt.-% of compound of alkaline-earth metal as measured for the complete mass of the impurity-decomposing agent. Ferric (III) oxide represents γ-form of iron hydroxyoxide and/or γ-form of ferric (III) oxide. Impurities represent at least one compound taken among the group consisting of chloropentafluoroethane, hexafluoropropene, chlorotrifluoromethane, dichlorodifluoromethane and chlorodifluoromethane. Adsorbent represents at least one substance taken among the group consisting of activated coal, molecular sieves and carbon molecular sieves. Crude octafluoropropane comprises indicated impurities in the amount from 10 to 10 000 mole fr. by mass. Invention proposes gas, etching gas and purifying gas comprising octafluoropropane with purity degree 99.9999 wt.-% and above and containing chlorine compound in the concentration less 0.0001 wt.-%. Invention provides enhancing purity of octafluoropropane.

EFFECT: improved purifying method.

13 cl, 11 tbl, 12 ex

FIELD: polymer materials.

SUBSTANCE: method of applying high-resolution image of functional layers, e.g. for applying lithographic mask or other functional layers, comprises polymerization of monomers from vapor phase under action of finely focused electron beam with energy 1 to 1000 keV followed by injection of monomer vapors at pressure from 10-4 to 10 torr. Electron beam is introduced into working chamber through a small opening in membrane, which enables avoiding scattering of electrons on membrane and, at the same time, maintaining monomer vapor pressure in working chamber high enough to ensure acceptable growth time for thickness (height) of image line. Preferred image applying conditions are the following: electron energy in electron beam 10 to 500 keV and monomer vapor pressure 0.001 to 10 torr. For electron beam diameter 50 nm, image width 100-150 nm can be obtained. When improving electron beam focusing, accessible electron beam diameter may be further diminished.

EFFECT: enabled high-resolution image of functional layers directly from monomer in single-step "dry" process without using any solvents.

2 cl, 2 dwg, 8 ex

FIELD: semiconductor microelectronics; high-degree surface cleaning technologies.

SUBSTANCE: proposed method can be used in resource and energy conservation environmentally friendly and safe technology for integrated circuit manufacture, removal of positive photoresist from wafer surface, electrochemical etching of silicon, and degreasing of surfaces. Si surface is cleaned by detergent NH4HF2 of 0.1 - 4 M concentration activated by ozone at anode current density of 1 - 2 kA/m2, and waste solution is cleaned and activated by sequentially passing it through electrolyzer cathode and anode chamber.

EFFECT: enhanced quality and effectiveness of photoresist removal from semiconductor surface.

2 cl, 2 dwg

FIELD: plasma-chemical treatment of wafers and integrated circuit manufacture.

SUBSTANCE: proposed device that can be used in photolithography for photoresist removal and radical etching of various semiconductor layers in integrated circuit manufacturing processes has activation chamber made in the form of insulating pipe with working gas admission branch; inductor made in the form of inductance coil wound on part of pipe outer surface length and connected to high-frequency generator; reaction chamber with gas evacuating pipe, shielding screens disposed at pipe base, and temperature-stabilized substrate holder mounted in chamber base. In addition device is provided with grounded shield made in the form of conducting nonmagnetic cylinder that has at least one notch along its generating line and is installed between inductor and pipe; shielding screens of device are made in the form of set of thin metal plates arranged in parallel at desired angle to substrate holder within cylindrical holder whose inner diameter is greater than maximal diameter of wafers being treated. Tilting angle, quantity, and parameters of wafers are chosen considering the transparency of gas flow screen and ability of each wafer to overlap another one maximum half its area. In addition substrate holder is spaced maximum four and minimum 0.6 of pipe inner diameter from last turn of inductance coil; coil turn number is chosen to ensure excitation of intensive discharge in vicinity of inductor depending on generator output voltage and on inner diameter of pipe using the following equation:

where n is inductance coil turn number; U is generator output voltage, V; Dp is inner diameter of pipe, mm.

EFFECT: enhanced speed and quality of wafer treatment; reduced cost due to reduced gas and power requirement for wafer treatment.

1 cl, 6 dwg, 1 tbl

FIELD: microelectronics.

SUBSTANCE: proposed method that can be used for photolytic etching of wafers in the course of manufacture of very large-scale integrated circuit includes etching of SiO2 surface in sulfur hexafluoride under action of vacuum ultraviolet emission of deuterium-vapor lamp. Argon is introduced in addition into etching gas.

EFFECT: enhanced selectivity of silicon dioxide etching with respect to monocrystalline and polycrystalline silicon.

3 cl, 1 tbl

FIELD: process equipment for manufacturing semiconductor devices.

SUBSTANCE: plasma treatment chamber 200 affording improvement in procedures of pressure control above semiconductor wafer 206 is, essentially, vacuum chamber 212, 214, 216 communicating with plasma exciting and holding device. Part of this device is etching-gas source 250 and outlet channel 260. Boundaries of area above semiconductor wafer are controlled by limiting ring. Pressure above semiconductor wafer depends on pressure drop within limiting ring. The latter is part of above-the-wafer pressure controller that provides for controlling more than 100% of pressure control area above semiconductor wafer. Such pressure controller can be made in the form of three adjustable limiting rings 230, 232, 234 and limiting unit 236 on holder 240 that can be used to control pressure above semiconductor wafer.

EFFECT: enhanced reliability of pressure control procedure.

15 cl, 13 dwg

FIELD: manufacture of microelectronic and nanoelectronic devices.

SUBSTANCE: selective etchant of AlAs and AlGaAs layers relative to GaAs has iodine I2 and organic solvent wherein iodine I2 is dissolved, proportion of mentioned components being as follows, mass percent: iodine, 0.1 - 4; organic solvent, 96 - 99.9. Isopropyl alcohol or acetone can be used as organic solvent. Enhanced selectivity of etching AlAs and AlGaAs layers including those with low Al content (below 40%), as well as their high selectivity relative to InAs and InGaAs are attained at room temperature.

EFFECT: ability of using proposed etchant in nanotechnology for separating upper layers in the order of several single layers.

2 cl

FIELD: engineering of semiconductor devices.

SUBSTANCE: invention concerns method and device for etching dielectric, removing etching mask and cleaning etching chamber. In etching chamber 40 semiconductor plate 56 is positioned. Dielectric 58 made on semiconductor plate is subjected to etching, using local plasma, produced by special device for producing local plasma during etching process. Mask for etching 60 is removed by means of plasma from autonomous source 54, generated in device for producing plasma from autonomous source connected to etching chamber. Etching chamber after removal of semiconductor plate is subjected to cleaning, using either local plasma, or plasma from autonomous source. To achieve higher level of cleaning, it is possible to utilize a heater, providing heating for chamber wall.

EFFECT: increased efficiency.

2 cl, 4 dwg

FIELD: technology for producing semi-penetrable membranes for molecular filtration of gas flows and for division of reaction spaces in chemical reactors.

SUBSTANCE: method for producing gas-penetrable membrane includes two-sided electro-chemical etching of monocrystalline plate made of composition AIIIBV of n conductivity type or of semiconductor AIV with width of forbidden zone E≥1,0 electron volts and alloying level 1017-1020 1/cm3. Modes of aforementioned etching are set, providing for generation of simultaneously porous layers, while etching process is performed until moment of spontaneous stopping of electro-chemical process and generation of solid separating layer of stationary thickness on given part of plate area, determined using sharp bend on the curve of temporal dependence of anode current.

EFFECT: gas membrane, produced in accordance to method, has increased penetrability for molecules of light gases and increased selectivity characteristics at room temperature.

2 cl, 3 dwg, 3 ex

Up!