Heat exchanger

FIELD: power engineering.

SUBSTANCE: invention can be used in feed water heaters of thermal and nuclear power plants. Proposed heat exchanger consists of a shell inside which a central header and vertical tube platens connected with their ends to appropriate central header chambers are installed. At that each platen is made at least of one "П"-shaped section with transverse parts installed in the shell one above the other, and intermediate part wherein external tubes are installed longitudinally on the shell side, and internal tubes are located on the header side. Internal tubes of the intermediate section part are made with additional sections bent in the direction of central header and located between transverse parts of this section. In this case average tube length makes bigger in each platen, which leads to less number of tubes used in each platen, and therefore to velocity increase in tube and intertube spaces of platens and heat exchange intensification, which finally reduces heat exchanger specific amount of metal.

EFFECT: reducing thermal and hydraulic maldistributions in platens, which also improves platen heat exchange and reduces to a greater degree the heat exchanger specific amount of metal.

2 dwg

 

The invention relates to energy and can be used in the feedwater heater thermal and nuclear power plants.

The known heat exchanger, comprising a housing, inside which there is a Central collector and vertical screens made of pipes connected ends to the respective chambers of the Central manifold, and each screen is made of U-shaped section with a transverse parts installed in the housing one above the other, and an intermediate part, in which the pipe is installed longitudinally from the side of the chassis (see USSR author's certificate No. 368448, M CL F22G 1/00, 1973).

In such a heat exchanger in the annular space screens heat transfer occurs mainly in the longitudinal wrapping of pipes, which is characterized by a relatively low intensity of heat, which increases the required heat exchange surface.

The present invention is the closest technical solution known (prototype) is a heat exchanger comprising a housing, inside which there is a Central collector and vertical screens made of pipes connected ends to the respective chambers of the Central manifold, and each screen has a U-shaped section with a transverse parts installed in the housing one above the other, and intermediate portions, in which the outer tube to establish the s longitudinally from the housing, and the inner pipe are located longitudinally of the collector (see SU 1780576 A3, M CL F22D 1/32, 1992).

In such a heat exchanger in the annular space screens heat transfer occurs predominantly cross flow tubes, which is characterized by a relatively high intensity of heat transfer. Now required for heat exchanger heat exchanger surface, smaller than for the similar.

However, in each screen of the prototype of the inner tube have a length smaller than the length of the outer pipe. The increase in the difference in the lengths of the outer and inner pipes leads to a decrease in the average length of the tubes and accordingly increase the number of tubes in each screen at a given heat exchange surface. The increase in the number of tubes in each screen means lower velocity in the pipe and the annular space, which affects the heat transfer in the screen and leads, ultimately, to increased metal of the heat exchanger.

In addition, the difference in the lengths of the pipes in the screen leads to thermal and hydraulic resurgam in the screen, also determining the low efficiency of heat transfer and greater intensity of the heat exchanger.

Thus, the disadvantage of the prototype is the increased intensity of the heat exchanger.

An object of the invention is to reduce the metal of the heat exchanger by increasing the average length of the RUB in the screen, as well as declines in thermal and hydraulic razvitak.

The technical problem is solved in a heat exchanger, comprising a housing, inside which there is a Central collector and vertical screens made of pipes connected ends to the respective chambers of the Central manifold, and each screen is made of at least one U-shaped section with a transverse parts installed in the housing one above the other, and the intermediate part in which the outer tube is installed longitudinally from the housing, and the inner pipe are located on the side of the collector, while the inner tube intermediate part of the section is made with extra stations, curved in the direction of the Central manifold and placed between the transverse parts of this section.

Implementation of the internal pipes of the intermediate part of the section, with additional sections, curved in the direction of the Central manifold and placed between the transverse parts of this section, increases in each screen length of inner tubes and they are nearly equal in length with the external pipes. This increases the average length of the tubes in each screen. For a given surface heat transfer increase in the average length of the pipe leads to a decrease in their number in each screen, and hence to an increase of the velocity in the pipe and the annular space width and the intensification of heat transfer, which reduces the intensity of the heat exchanger.

This reduces thermal and hydraulic razvedki in the screen, which also improves the heat transfer in the screen and to an even greater extent reduces the intensity of the heat exchanger.

The invention is illustrated by drawings, where figure 1 shows a General view of the heat exchanger, figure 2 - node I 1.

The heat exchanger includes a housing 1 in which there is a Central collector with distributing chamber 2, and a collecting chamber 3, and the vertical screen 4 of the pipes connected to the input and output ends respectively to the chambers 2 and 3 protection tube space. Each screen can be made of one or more U-shaped sections (figure 1 shows the four sections in each screen).

Each U-shaped section of the screen with cross-pieces 5 and 6 installed in the housing 1, one above the other, and the intermediate part in which the outer tube 7 mounted lengthwise side of the housing 1 and the inner tube 8 are from the Central collector. Inner tube 8 of the intermediate part of the section is made with additional sections 9, curved in the direction of the Central manifold and placed between the cross pieces 5 and 6 of this section.

The housing 1 is made with the pipe 10 inlet and the outlet 11 of the exhaust environment annulus.

Teploobmen the nick when using it as a feed water heater of the power plant operates as follows.

In this case, the medium pipe space is a nutrient, water, and environment annulus - heating steam. Heating steam down the pipe 10 in the housing 1, where it is on the pipe screens 4 is condensed. The condensate is drained from the housing 1 through the pipe 11. Feed water is passed through the chamber 2, pipe screens 4 and the camera 3. When this water is heated by the heat of condensation of steam.

A heat exchanger comprising a housing, inside which there is a Central collector and vertical screens made of pipes connected ends to the respective chambers of the Central manifold, and each screen is made of at least one U-shaped section with a transverse parts installed in the housing one above the other, and the intermediate part in which the outer tube is installed longitudinally from the housing, and the inner pipe are from a collector, characterized in that the inner tube intermediate part of the section is made with extra stations, curved in the direction of the Central manifold and placed between the transverse parts of this section.



 

Same patents:

FIELD: mechanics, heating.

SUBSTANCE: in compliance with the invention, the heat exchanger-modular water heater incorporates one or two modules each comprising, at least, two heat exchanger units integrated by a diffuser to feed a cooling medium and a confuser to withdraw the medium to be cooled, primarily, a turbine hot exhaust gas. It also comprises the manifolds feeding and withdrawing the medium being heated, primarily, air, each communicating, via a tube plates fitted directly in the said manifold walls, with the multi-row bank of the four-pass heat exchanger variable standard-size pipes, the said standards sizes being calculated from the ratios covered by this invention and the aforesaid tube plates being secured by appropriated spacers. The multi-row bank can be made up of, at least, two trains of two-pass U-shape pipes integrated by the aforesaid manifolds and, at least, one bypass chamber.

EFFECT: high-efficiency heat exchanger, lower heat exchanger metal input, optimum design and spacers, higher design rigidity, simpler assembly of heat exchange pipe banks.

21 cl, 16 dwg

FIELD: mechanics, heating.

SUBSTANCE: in compliance with the invention, the heat exchanger-modular water heater incorporates one or two modules each comprising, at least, two heat exchanger units integrated by a diffuser to feed a cooling medium and a confuser to withdraw the medium to be cooled, primarily, a turbine hot exhaust gas. It also comprises the manifolds feeding and withdrawing the medium being heated, primarily, air, each communicating, via a tube plate, with, at least, one multi-row bank of multipass heat exchange pipes, the various pipes being furnished with bends varying in number from four to six and forming four rectilinear runs combining their three bends. Note here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. The unit of the heat exchange-modular air heater comprises four runs of the heat exchanger pipe multi-row four-pass bank, the said pipes being laid in horizontal rows spaced in horizontal and vertical planes, the manifolds feeding and withdrawing the medium being heated, each being connected, via separate tube plates, with heat exchanger pipes, each tube plate being mounted in the aforesaid manifold walls. Note here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. In compliance with the proposed invention, the aforesaid heat exchanger unit-modular air heater comprises a carcass, a bottom, and upper and lower casing walls, a diffuser to feed the medium to be cooled and a confuser to feed the aforesaid medium, manifolds feeding and withdrawing the medium to be heated and furnished with tube plates that form, in every row, an even number of rectilinear multi-pipe banks including, at least, two inner and two outer banks integrated by constant-radius bends. Note here that the unit housing bottom, cover and one of the side walls represent panels with a reinforcement framing elements forming a flat rod systems, while the unit carcass is formed by a set of the aforesaid flat rod systems with intermediate posts inter jointing the aforesaid systems and the manifolds housings rigidly fixed thereto and, in their turn, attached to the unit bottom and inter jointed via two-ring diaphragms and a pipe medium displacer. Note that the parts of the aforesaid manifolds housings with the aforesaid tube plates and pipe medium displacer fitted therein form, when combined, the unit housing rigid face wall while the side walls allow fastening the diffuser and confuser elements. Note here also that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. In compliance with this invention, the aforesaid heat exchanger unit-modular air heater incorporates a multi-row heat exchanger pipe bank made up of, at least, two bundles of two-pass U-pipes forming, within one bundle, two-run horizontal rows of pipes spaced apart both in rows and between rows, manifolds of feeding and withdrawing the medium being heated and, at least one bypass chamber arranged there between. Note here that the aforesaid manifolds and the bypass chamber communicate with the heat exchanger pipes via a common tube plate or separate tube plates, at least, one part of the said plates forming a part of the aforesaid manifolds enclosure walls. Note also here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs.

EFFECT: higher heat exchange efficiency, lower metal intensity of regenerative air heater.

34 cl, 15 dwg

The heat exchanger // 2141613
The invention relates to heat engineering, primarily for vehicles, namely, devices, providing comfortable conditions in the cabin of a vehicle, and air conditioning equipment

The heat exchanger // 2117892
The invention relates to a heat exchanger, in particular for installations operated with large load variations and/or temperature, for example as a cooler of the cooling air for the gas turbine containing tubes for separation of heat environment, in particular air, and heat-absorbing medium, in particular water, and heat transfer occurs by backflow pipes that serve as flow channels for the heat-absorbing medium, are sinuously between the intake and exhaust manifold pipes and the heat-release environment washes these winding pipe

The heat exchanger // 2080536
The invention relates to heat exchange devices used in membrane technology for temperature control of mediums and products of membrane separation and apparatus alcohol production for carrying out processes of condensation in systems containing gases

The heat exchanger // 2063602
The invention relates to heat exchange devices and can be used in climate installations vehicles, as well as in other industries

The heat exchanger // 2062969
The invention relates to the field of refrigeration technology and can be used as a cooler or condenser systems kondicionirovanija air, mainly vehicles

The heat exchanger // 2058006
The invention relates to heat exchange apparatus and can be used in power, chemical, oil, food, dairy industry and other sectors of the economy

Capacitor // 2028569
The invention relates to transport machinery, and in particular to cooling systems of vehicle bodies, and can be used, in particular, in air conditioning systems

FIELD: mechanics, heating.

SUBSTANCE: in compliance with the invention, the heat exchanger-modular water heater incorporates one or two modules each comprising, at least, two heat exchanger units integrated by a diffuser to feed a cooling medium and a confuser to withdraw the medium to be cooled, primarily, a turbine hot exhaust gas. It also comprises the manifolds feeding and withdrawing the medium being heated, primarily, air, each communicating, via a tube plate, with, at least, one multi-row bank of multipass heat exchange pipes, the various pipes being furnished with bends varying in number from four to six and forming four rectilinear runs combining their three bends. Note here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. The unit of the heat exchange-modular air heater comprises four runs of the heat exchanger pipe multi-row four-pass bank, the said pipes being laid in horizontal rows spaced in horizontal and vertical planes, the manifolds feeding and withdrawing the medium being heated, each being connected, via separate tube plates, with heat exchanger pipes, each tube plate being mounted in the aforesaid manifold walls. Note here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. In compliance with the proposed invention, the aforesaid heat exchanger unit-modular air heater comprises a carcass, a bottom, and upper and lower casing walls, a diffuser to feed the medium to be cooled and a confuser to feed the aforesaid medium, manifolds feeding and withdrawing the medium to be heated and furnished with tube plates that form, in every row, an even number of rectilinear multi-pipe banks including, at least, two inner and two outer banks integrated by constant-radius bends. Note here that the unit housing bottom, cover and one of the side walls represent panels with a reinforcement framing elements forming a flat rod systems, while the unit carcass is formed by a set of the aforesaid flat rod systems with intermediate posts inter jointing the aforesaid systems and the manifolds housings rigidly fixed thereto and, in their turn, attached to the unit bottom and inter jointed via two-ring diaphragms and a pipe medium displacer. Note that the parts of the aforesaid manifolds housings with the aforesaid tube plates and pipe medium displacer fitted therein form, when combined, the unit housing rigid face wall while the side walls allow fastening the diffuser and confuser elements. Note here also that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. In compliance with this invention, the aforesaid heat exchanger unit-modular air heater incorporates a multi-row heat exchanger pipe bank made up of, at least, two bundles of two-pass U-pipes forming, within one bundle, two-run horizontal rows of pipes spaced apart both in rows and between rows, manifolds of feeding and withdrawing the medium being heated and, at least one bypass chamber arranged there between. Note here that the aforesaid manifolds and the bypass chamber communicate with the heat exchanger pipes via a common tube plate or separate tube plates, at least, one part of the said plates forming a part of the aforesaid manifolds enclosure walls. Note also here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs.

EFFECT: higher heat exchange efficiency, lower metal intensity of regenerative air heater.

34 cl, 15 dwg

FIELD: mechanics, heating.

SUBSTANCE: in compliance with the invention, the heat exchanger-modular water heater incorporates one or two modules each comprising, at least, two heat exchanger units integrated by a diffuser to feed a cooling medium and a confuser to withdraw the medium to be cooled, primarily, a turbine hot exhaust gas. It also comprises the manifolds feeding and withdrawing the medium being heated, primarily, air, each communicating, via a tube plates fitted directly in the said manifold walls, with the multi-row bank of the four-pass heat exchanger variable standard-size pipes, the said standards sizes being calculated from the ratios covered by this invention and the aforesaid tube plates being secured by appropriated spacers. The multi-row bank can be made up of, at least, two trains of two-pass U-shape pipes integrated by the aforesaid manifolds and, at least, one bypass chamber.

EFFECT: high-efficiency heat exchanger, lower heat exchanger metal input, optimum design and spacers, higher design rigidity, simpler assembly of heat exchange pipe banks.

21 cl, 16 dwg

Heat exchanger // 2341751

FIELD: power engineering.

SUBSTANCE: invention can be used in feed water heaters of thermal and nuclear power plants. Proposed heat exchanger consists of a shell inside which a central header and vertical tube platens connected with their ends to appropriate central header chambers are installed. At that each platen is made at least of one "П"-shaped section with transverse parts installed in the shell one above the other, and intermediate part wherein external tubes are installed longitudinally on the shell side, and internal tubes are located on the header side. Internal tubes of the intermediate section part are made with additional sections bent in the direction of central header and located between transverse parts of this section. In this case average tube length makes bigger in each platen, which leads to less number of tubes used in each platen, and therefore to velocity increase in tube and intertube spaces of platens and heat exchange intensification, which finally reduces heat exchanger specific amount of metal.

EFFECT: reducing thermal and hydraulic maldistributions in platens, which also improves platen heat exchange and reduces to a greater degree the heat exchanger specific amount of metal.

2 dwg

Heat exchanger // 2378595

FIELD: heating systems.

SUBSTANCE: invention refers to heat engineering and can be used during arrangement of high thermally stressed heat exchanger of nuclear power plant. In heat exchanger consisting of bank of heat exchange coil tubes the ends of which are fixed in tube sheets arranged in the form of a platen, straight sections of several coil tubes are located consequently in one plane, and bent sections are opened to the side from location plane of straight sections; at that, opening of bends of opposite ends, straight sections, is made to different sides.

EFFECT: providing maximum compactness of tube bank of heat exchanger and reaching high degree of heat exchange efficiency owing to arrangement of heat removal surface itself during operation, increasing life time of reliable operation of heat exchanger design at high specific thermal stresses of the volume occupied with it.

5 dwg

Heat exchanger // 2384802

FIELD: heating.

SUBSTANCE: invention refers to heat engineering and can be used as heat exchanger of nuclear power plant operating in variable load conditions. In heat exchanger containing a bundle of heat exchange zigzag-shaped tubes with external finning in straight sections, which is installed in the housing, spacers arranged between tubes of the bundle so that mixing chambers are formed in the bending area of the latter, the spacers have thickenings in straight tube sections and grooves evenly spaced relative to them so that an individual channel is formed around each tube, which interconnects mixing chambers to each other.

EFFECT: providing forced heat exchange for obtaining small overall dimensions of equipment owing to increasing uniform temperature field in cross section of tube bundle, and decreasing relative tube deformation at thermal elongations.

4 dwg

FIELD: oil and gas industry.

SUBSTANCE: heating device of high-viscous oil products and their mixtures includes cylindrical housing with inlet and outlet covers with the appropriate inlet and outlet connection pipelines, tube grids located inside the housing, and distributing inlet and outlet boxes equipped with inlet and outlet tubes respectively and interconnected with ends of tube grids for pumping of heat carrier. Housing is located vertically, lower outlet cover is tapered with outlet connection pipe in lower part, which is enveloped below that cover with inlet distribution box which has the possibility of exchanging the heat with taper surface of lower cover, and upper inlet cover is equipped with inlet connection pipe installed coaxially with the housing; at that, tube grid is made in the form of hopper bent inside the housing and converging downwards; inside that hopper there located is baffle plate distributing the flow of oil products to tube grids and uniformly connected along the perimetre at least to three tubes of the grid with heat-conducting plates.

EFFECT: device is reliable-to-operate, and uniform resistance to flow of oil products is provided.

2 dwg

FIELD: power engineering.

SUBSTANCE: plant comprises a jacket that passes in longitudinal direction between the head end and the base end, inside which there are inbuilt elements that form a heat-exchange and a mixing structure. Besides, there is coolant medium supply as an internal flow into pipes of inbuilt elements from the base end to the head end and fluid supply as an external flow from the head end to the base end. The plant comprises reinforcement elements to stabilise inbuilt elements in longitudinal direction from pressure gradients developed by fluid, besides, in the main area they are joined with reinforcement elements into a partial structure, which is not exposed to thermal expansion, and in the side area they remain at least partially non-reinforced to form a partial structure capable of thermal expansion in longitudinal direction.

EFFECT: increased efficiency of heat exchange, improvement of the plant.

14 cl, 4 dwg

FIELD: power engineering.

SUBSTANCE: heat exchanger-reactor comprises a vessel in the form of a truncated cone, with a surface concave towards its vertical axis with bottoms, nozzle for coolant inlet and outlet from tube and shell spaces. Inside the vessel 1 there is a tube bundle arranged, comprising at least two rows of cone-shaped pipes fixed with ends in holes of plates along concentric circumferences. Tubes are installed with an inclination simultaneously in two directions: with an inclination to a vertical axis of the vessel and with an additional inclination arranged by displacement of ends in a circumferential direction, i.e. along arcs of circumferences of their installation in tube plates. At the same time inclination angles are arranged within the limits of 0.5-50.0 degrees from the vertical plane stretching via the vertical axis of the vessel.

EFFECT: no necessity to increase input parameters of a coolant, which helps to save thermal and electric power.

5 cl, 4 dwg

FIELD: heating.

SUBSTANCE: in the heat exchanging device the finned heat exchanging tube with the diameter d is made serpentine-shaped with an outer finning diameter D and the thickness of the fins L1, located at a distance L2 from each other. The amplitude of the serpentine A on the outer finning diameter is not less than A=D×(2+1L1+L2L11), the wave period of the serpentine P is not less than P=2D×(1+1L1+L2L11).

EFFECT: intensification of heat exchanging due to turbulence in the flow passing inside the finned serpentine-shaped tubes, and increase in the area of heat exchanging of the device.

23 cl, 8 dwg, 2 tbl

FIELD: heating.

SUBSTANCE: heat exchange device includes elements in the form of spirally wound pipes with alternating straight and ring-shaped sections located opposite each other. The elements are installed in each other with ring-shaped sections. The straight sections of adjacent elements in the heat exchange device are located on one side, and the ring-shaped sections are located on the other side; with that, the elements in the cross section of the heat exchange device are located about its axis in a circumferential direction, with orientation of the ring-shaped sections to the above said axis. The straight sections in the elements can be located in different planes at an angle to each other. In this case, rings of the ring-shaped sections have different diameters, which are maximum in the middle of the elements and minimum in its end sections. At alignment of direction of windings of the adjacent elements, the planes that adjoin the outer side of the ring-shaped sections intersect the axis of the heat exchange device at an acute angle. At mutually opposite direction of the windings of the adjacent elements, the above planes and the axis are parallel.

EFFECT: reduction of overall dimensions of the heat exchange device due to a sealed layout of adjacent elements in it; possibility of arranging it in cylindrical, annular, toroid-shaped and spherical cavities.

4 cl, 14 dwg

Up!