Basement

FIELD: building.

SUBSTANCE: invention refers to building and concerns creation of the basements - mesh envelopments for buildings and constructions. The basement contains the artificial basement with a curvilinear surface, supporters and envelopment located on the basement. Supporters are executed in the form of radial and ring tapes forming the mesh envelopment, laid and gummed on the concrete surface formed on a curvilinear surface of the artificial basement located in foundation ditch and turned bulge upwards. Radial tapes are attached by edges to a basic contour in the form of system of cross girders, which is sunk in the natural base.

EFFECT: provision of effective and reliable protection of the over-basement design, decrease of materials consumption.

1 dwg

 

The invention relates to the construction involves the installation of foundations - reticulated shells for buildings and structures.

The Foundation includes a curved surface which is convex upward, the system of load-bearing tapes mesh shell, the reference circuit in the form of a system of cross beams.

What's new is that the form of the Foundation bearing allows the tapes to work on stretching. Therefore, all of the tapes in the basement are working. The system tape has no bending stiffness.

The technical result of the invention is to reduce the consumption of concrete and metal due to the curved surface convex upwards, which makes full use of the carrier tape.

Known foundations in the form of a multiwave membranes bulge down [1]. Sheath material - concrete. When given constructive scheme shell operates mainly in compression.

The disadvantage of such designs is the difficulty of forming the base, the introduction of additional elements for perception spacer efforts, as well as significant additional costs on the flooring.

Known Foundation in the form of a shell finite stiffness, the upward-convex [2]. When given constructive scheme shell works predominantly in tension.

The disadvantage of this design is the presence of armatures Central section of the shell and cracks, which may be formed during the action of stretching and bending and lead to corrosion of steel reinforcement.

Closest to the invention is the Foundation of a completely flexible shell, convex upward, made of high-strength fabric. The ends of the shell are attached to the supports [3].

The disadvantage of this design is a significant deformation of the membrane due to the low modulus of elasticity of high-strength fabric, which leads to excess precipitation buildings and complicates the construction of floors. Design does not have a closed path. It is assumed that the thrust from the shell perceived by friction forces at the contact bearing - grunt.

The purpose of the invention is to create an effective Foundation - shell compliance with specified reliability advancements design.

Proposed Foundation containing artificial base with a curved surface, the bearing elements and the shell, located on the grounds, according to the invention, the bearing elements are made in the form of radial and annular bands forming a mesh shell, stacked and glued to the concrete surface, formed on the curved surface of the artificial base, located in the pit and is convex upward, and radial tape attached edges to a reference contour in the form of a system which we cross beams, which is embedded in the natural basis.

As foundations are used tape, forming a convex upward sloping mesh shell, positive Gaussian curvature ratio boom lift spanand the ratio of section height to span. This Foundation is presented in the form of bearing radial tape 1 and the annular belts 2. Radial tape is limited by the cross-beams 3, figure 1. In this constructive form of tape 1 and 2 on the concrete surface 4 of the artificial base 5 are in tension. The surface is of unreinforced concrete. As the load-bearing belts can be used basalt, aramid or carbon fibers of high strength and high modulus of elasticity. Carrier tapes are stacked and glued to the concrete surface. The reference circuit embedded in the natural basis. Raspor in the design is reduced through the clutch carrier tape with a concrete surface and friction along the contact of the concrete surface to the base. The perception of spreading is due to the Flexural rigidity of the reference circuit 3 and the lateral resistance of the soil along the reference path. Attaching radial bearing tape is made in the body of the concrete anchor paths.

The essence of sawla the constituent of the invention illustrated by the drawing.

Way Foundation - mesh shell is as follows. Developed pit planning to mark 6. Planned artificial curvilinear basis of mineral materials 5. Formwork and install reinforcing cages in the reference contours 3. Is the concreting surface of the artificial base 5. On a concrete surface 4 are stacked and glued radial bearing ring and ribbon. Is attaching radial tape 1 in the reference frame contours. Is the concreting of the reference circuit 3.

In the process sediment reference circuits 3 of the Foundation is the involvement of the artificial base 5, the concrete surface 4 and carrier tapes 1, 2 in the transfer of most of the external load on the artificial ground under the Foundation. This significantly increases the resistance of the soil in the most loaded area under the reference circuit 3. In this case, resistance of the artificial base is also increasing due to its compression in the horizontal direction of the reference circuit 3. The reactive pressure of the artificial base is transferred to the concrete surface and distributed on the carrier tape 1, 2. Spacer efforts that appear in the radial bearing tapes 1, the settling of the Foundation transmit transverse loads on the support account is s rectangular Foundation. While the efforts of spreading significantly reduced through the joint implementation of the adhesion forces of load-bearing tapes with the concrete surface of the artificial base, friction contact: concrete surface is an artificial basis.

Sources of information

1. Manushkin YEAR interaction multiwave foundations casings basis. Abstract of Cand. thesis. Dnepropetrovsk, 1985.

2. Patent for invention No. 2223367. Application No. 2001122570. Registered in the State register of inventions of the Russian Federation 10.02.04.

3. The copyright certificate. SU 715722 And 25.02.80, 02D 27/01.

The Foundation that contains synthetic base with a curved surface, the bearing elements and the shell located on the base, wherein the bearing elements are in the form of radial and annular bands forming a mesh shell, stacked and glued to the concrete surface, formed on the curved surface of the artificial base, located in the pit and is convex upward, and radial tape attached edges to a reference contour in the form of a system of cross-beams, which are embedded in the natural basis.



 

Same patents:

Basement // 2334053

FIELD: building.

SUBSTANCE: invention refers to building and concerns creation of the basements of radial envelopments for buildings and constructions. The basement contains the basement with a curvilinear surface, supporters and envelopment located on the basement. Supporters are executed in the form of radial tapes forming envelopment, laid on a curvilinear surface and turned by bulge upwards the artificial basement located in a foundation ditch or the natural basement. Radial tapes are attached by edges to a basic contour in the form of a basic ring which is established on the natural basement.

EFFECT: provision of effective and reliable protection of the over-basement design, decrease of materials consumption.

1 dwg

Basement // 2334052

FIELD: building.

SUBSTANCE: invention refers to building and concerns creation of basements - mesh envelopments for buildings and constructions. The basement contains the artificial basement with a curvilinear surface, supporters and envelopment located on the basement. Supporters are executed in the form of radial and ring tapes forming the mesh envelopment, laid and gummed on the concrete surface formed on a curvilinear surface of the artificial basement located in foundation ditch and turned bulge upwards. Radial tapes are attached by edges to a basic contour in the form of a basic ring which is established on the natural base.

EFFECT: maintenance of effective and reliable protection of the over-basement design, decrease of materials consumption

1 dwg

Basement // 2334051

FIELD: building.

SUBSTANCE: invention refers to building and concerns creation of basements - mesh envelopments for buildings and constructions. The basement contains the artificial basement with a curvilinear surface, supporters and envelopment located on the basement. Supporters are executed in the form of radial and ring tapes forming the mesh envelopment, laid and gummed on the concrete surface formed on a curvilinear surface of the artificial basement located in foundation ditch and turned bulge upwards. Radial tapes are attached by edges to a basic contour in the form of a basic ring which is established on the natural basement.

EFFECT: maintenance of effective and reliable protection of the over-basement design, decrease of materials consumption.

1 dwg

Basement structure // 2334050

FIELD: building.

SUBSTANCE: invention refers to construction of the basements of buildings. The basement structure of a building includes heat - and waterproofing layer (17, 18, 40) which is laid on a flat horizontal surface (51) layer of the material breaking capillary action. The basement structure includes a frame (31) which surrounds specified heat - and waterproofing layer (17, 18, 40), at least, in its top part, thus fixing integrity of basement structure in a horizontal plane and which serves for punctiform bracing of the building supported by basement structure. The specified basement structure is encapsulated with foil (111) from a metal material.

EFFECT: prevention of smell penetration in a building and water-proofing maintenance; possibility of fast and energy conserving erection of the basement.

8 cl, 8 dwg

FIELD: constructional engineering.

SUBSTANCE: invention refers to constructions on heaving soils. House footing based on freezing through soils includes a rigid body with flanges and indents from soil side, footing indent inserts made of heat-insulating material, e.g. polystyrene foam at such ratio of flange and footing indent areas that soil pressure from the lower flange surface is not less than standard pressure of frost soil heaving, soil pressure from the lower insert surface is not exceeding design compression resistance of insert material. Also, the said footing contains supplementary heat insulation laid outside of the footing. The upper edge of supplementary heat insulation is passed from external edge of the footing in the form of interrupted inserts through rigid body of the footing and connected to supplementary heat insulation of opposite external edge of the footing. Relative area of interrupted inserts (β=Aint.ins./A0) is given by the relation β≤1-σmax/R, where Aint.ins. is sectional area of interrupted inserts, m2, A0 is gross sectional area of the footing within inserts arrangement regions, m2, σmax is maximum external load pressure in footing material, MPa, R is design resistance of footing material, MPa. Indents and flanges of the footing from soil side are alternating along footing length. Indents centres from soil sides are provided under interrupted inserts centres of supplementary heat insulation from each external edge of the footing.

EFFECT: possibility to lay foundation above the design depth of heaving soil frost penetration level.

4 dwg, 1 tbl

FIELD: construction, surface mounted structures.

SUBSTANCE: invention pertains to construction and can be used when erecting buildings with considerable loading on a compressed clay bed. The technique for erecting a solid core foundation slab with closed vertical walls, directed downwards, involves designing a foundation pit, trenches, reinforcing them with frames and filling with concrete, and joining the surface with a slab. The trenches are dug from the bottom of the foundation with different depths. The trenches are then joined, thereby forming several closed contours, whose depth increases from the central part of the slab to the edges. The technical outcome is increase in strength of the foundation slab due to effect of the square shaped closed edges in the ground.

EFFECT: increased strength of the foundation slab.

3 dwg

FIELD: construction, particularly to reconstruct buildings and building structures.

SUBSTANCE: foundation comprises supports, sheath freely formed in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Cement mix layer, metal arch trusses and reinforced concrete layer are serially arranged on ground inside area defined by foundation. Metal sheets are laid on arch trusses and connected with each other through welded joints to create flexible sheath. Pre-stressed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath. In the second embodiment foundation comprises support, sheath freely arranged in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Ground mix layer reinforced with cement mix, metal sheets and reinforced concrete layer are serially located on ground inside area defined by foundation. Metal sheets are bent along predetermined profile and connected with each other to create sheath. Relaxed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath.

EFFECT: increased operational reliability.

4 cl, 1 dwg, 1 ex

FIELD: construction, particularly to erect foundations on natural bases.

SUBSTANCE: shallow foundation comprises support mats and foundation building blocks. Support mats have through orifices along mat perimeters. Upper parts thereof have extensions shaped as truncated cones and adapted to immerse piles in ground as load increases during structure overbuilding.

EFFECT: increased load-bearing ability.

2 dwg

FIELD: construction, particularly to erect multistory buildings on non-uniformly compressible clay base.

SUBSTANCE: method involves excavating crossing trenches in ground; filling the trenches with concrete and joining thereof with slab covering the trenches. Trenches are excavated from pit bottom for different depths. Lower trench parts are provided with widened abutment sections having reinforcement bars included therein. The reinforcement bars are used as non-stretched threads. Trenches and slab are reinforced with nettings. Cell centers of the slab are anchored.

EFFECT: increased rigidity of foundation slab due to provision of ribs in ground.

5 dwg

FIELD: construction, particularly to erect foundations in natural base.

SUBSTANCE: method involves driving pair of members pivotally connected with each other and provided with single bevels at lower ends thereof in ground; digging-out trench; installing guiding member on trench bottom; forcing plate members in ground up to plate members abutting upon guiding member and closing of beveled upper ends thereof; installing the similar pair of members having lengths exceeding that of the first pair in trench; driving above pair in ground up to upper beveled ends closing; concreting the trench.

EFFECT: increased load-bearing capacity of the foundation due to inclined members embedding and ground compaction under foundation bottom.

4 dwg

FIELD: construction, particularly new building erection and existent building reconstruction under any engineering-geological circumstances.

SUBSTANCE: foundation structure comprises shallow foundation and reinforcement members. Reinforcement members are made as vertical bars of precast or cast-in-place piles having diameters less than 200 mm and arranged along foundation perimeter. The piles are spaced a distance from outer foundation faces. The distance is equal to 0.1-0.5 of reinforcement member diameter. Distance between neighboring piles is equal to 2-4 reinforcement member diameters and reinforcement member length is 15-20 diameters thereof.

EFFECT: increased load-bearing capacity due to creating compressive operational conditions under different engineering-geological circumstances, increased dynamic rigidity of foundation base and reduced foundation deformation and vibrational amplitude.

9 dwg

FIELD: building, particularly panel foundations for multistory buildings and structures, which apply non-uniform loads to ground base.

SUBSTANCE: method involves forming crossing slots in ground; reinforcing the slots with frames and concreting the slots. For panel foundation erection in clay ground pit is preliminarily dug in ground. Then crossing slots adapted for reinforcing frames receiving are created in pit ground, wherein the reinforcing frames have projected parts. Areas of reinforcing frames intersection are additionally reinforced along with connecting projected parts and concreting thereof to fill the slots.

EFFECT: increased operational effectiveness and reduced costs.

2 dwg

FIELD: building, particularly to erect bored cast-in-place foundations of increased load-bearing abilities including ones having bottom marks typical to shallow foundations.

SUBSTANCE: stepped foundation comprises bored cast-in-place sections formed with the use of auger. Lower foundation step includes four peripheral cylinders of Dp.l. diameters and heights equal to above diameters. Peripheral cylinder centers are located at apexes of square having side lengths equal to Dp.l.. Square center coincides with center of support. Central support abutting four peripheral cylinders of lower foundation step has four expanded parts with Dc.exp diameters determined as Dc.exp=(1.0-1.2)Dp.l. and cylindrical bore having diameter Dp.up determined as Dp.up=(0.6-0.8)Dp.l.. Foundation bottom is 0.7 m below ground surface. Foundation erection method involves forming drilled pile sections; serially drilling wells having daug.1 diameters as each peripheral cylinder having Dp.l. is forming; creating each peripheral cylinder having height equal to Dp.l. by supplying working material for above cylinder forming; filling remainder well section with ground material, particularly with ground excavated from above object. Auger having diameter, which provides necessary Dp.l. diameter is used. The auger provides usage of technological processes, which provides 1.05-1.1 increase of pile diameter in comparison with auger diameter daug.1 and 1.1-1.2 increase of ground pile diameter in comparison with daug.1 diameter. After four peripheral cylinders of lower foundation step creation well having daug.2 diameter is drilled by means of direct auger rotation and ground excavation to day surface. The well has center coinciding with central support center and depth selected so that the well reach tops pf peripheral lower step cylinders. Then lower expanded part of central support is formed, wherein the expanded part has expansion degree Bc.exp./daug.2 equal to 1.5-2.0. During cylindrical bore drilling the expanded part has expansion degree Dp.up/daug.2 equal to 1.2-1.5.

EFFECT: increased load-bearing capacity per foundation volume unit, extended field of technical means.

3 cl, 4 dwg

FIELD: construction, particularly to erect foundations in natural base.

SUBSTANCE: method involves driving pair of members pivotally connected with each other and provided with single bevels at lower ends thereof in ground; digging-out trench; installing guiding member on trench bottom; forcing plate members in ground up to plate members abutting upon guiding member and closing of beveled upper ends thereof; installing the similar pair of members having lengths exceeding that of the first pair in trench; driving above pair in ground up to upper beveled ends closing; concreting the trench.

EFFECT: increased load-bearing capacity of the foundation due to inclined members embedding and ground compaction under foundation bottom.

4 dwg

FIELD: construction, particularly to erect multistory buildings on non-uniformly compressible clay base.

SUBSTANCE: method involves excavating crossing trenches in ground; filling the trenches with concrete and joining thereof with slab covering the trenches. Trenches are excavated from pit bottom for different depths. Lower trench parts are provided with widened abutment sections having reinforcement bars included therein. The reinforcement bars are used as non-stretched threads. Trenches and slab are reinforced with nettings. Cell centers of the slab are anchored.

EFFECT: increased rigidity of foundation slab due to provision of ribs in ground.

5 dwg

FIELD: construction, particularly to erect foundations on natural bases.

SUBSTANCE: shallow foundation comprises support mats and foundation building blocks. Support mats have through orifices along mat perimeters. Upper parts thereof have extensions shaped as truncated cones and adapted to immerse piles in ground as load increases during structure overbuilding.

EFFECT: increased load-bearing ability.

2 dwg

FIELD: construction, particularly to reconstruct buildings and building structures.

SUBSTANCE: foundation comprises supports, sheath freely formed in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Cement mix layer, metal arch trusses and reinforced concrete layer are serially arranged on ground inside area defined by foundation. Metal sheets are laid on arch trusses and connected with each other through welded joints to create flexible sheath. Pre-stressed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath. In the second embodiment foundation comprises support, sheath freely arranged in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Ground mix layer reinforced with cement mix, metal sheets and reinforced concrete layer are serially located on ground inside area defined by foundation. Metal sheets are bent along predetermined profile and connected with each other to create sheath. Relaxed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath.

EFFECT: increased operational reliability.

4 cl, 1 dwg, 1 ex

FIELD: construction, surface mounted structures.

SUBSTANCE: invention pertains to construction and can be used when erecting buildings with considerable loading on a compressed clay bed. The technique for erecting a solid core foundation slab with closed vertical walls, directed downwards, involves designing a foundation pit, trenches, reinforcing them with frames and filling with concrete, and joining the surface with a slab. The trenches are dug from the bottom of the foundation with different depths. The trenches are then joined, thereby forming several closed contours, whose depth increases from the central part of the slab to the edges. The technical outcome is increase in strength of the foundation slab due to effect of the square shaped closed edges in the ground.

EFFECT: increased strength of the foundation slab.

3 dwg

FIELD: constructional engineering.

SUBSTANCE: invention refers to constructions on heaving soils. House footing based on freezing through soils includes a rigid body with flanges and indents from soil side, footing indent inserts made of heat-insulating material, e.g. polystyrene foam at such ratio of flange and footing indent areas that soil pressure from the lower flange surface is not less than standard pressure of frost soil heaving, soil pressure from the lower insert surface is not exceeding design compression resistance of insert material. Also, the said footing contains supplementary heat insulation laid outside of the footing. The upper edge of supplementary heat insulation is passed from external edge of the footing in the form of interrupted inserts through rigid body of the footing and connected to supplementary heat insulation of opposite external edge of the footing. Relative area of interrupted inserts (β=Aint.ins./A0) is given by the relation β≤1-σmax/R, where Aint.ins. is sectional area of interrupted inserts, m2, A0 is gross sectional area of the footing within inserts arrangement regions, m2, σmax is maximum external load pressure in footing material, MPa, R is design resistance of footing material, MPa. Indents and flanges of the footing from soil side are alternating along footing length. Indents centres from soil sides are provided under interrupted inserts centres of supplementary heat insulation from each external edge of the footing.

EFFECT: possibility to lay foundation above the design depth of heaving soil frost penetration level.

4 dwg, 1 tbl

Basement structure // 2334050

FIELD: building.

SUBSTANCE: invention refers to construction of the basements of buildings. The basement structure of a building includes heat - and waterproofing layer (17, 18, 40) which is laid on a flat horizontal surface (51) layer of the material breaking capillary action. The basement structure includes a frame (31) which surrounds specified heat - and waterproofing layer (17, 18, 40), at least, in its top part, thus fixing integrity of basement structure in a horizontal plane and which serves for punctiform bracing of the building supported by basement structure. The specified basement structure is encapsulated with foil (111) from a metal material.

EFFECT: prevention of smell penetration in a building and water-proofing maintenance; possibility of fast and energy conserving erection of the basement.

8 cl, 8 dwg

Up!