Safety system of climbing crane with traveling crane equipment

FIELD: transport.

SUBSTANCE: invention relates to handling machinery and can be used in the systems of control and protection of climbing cranes. The safety system incorporates digital computing unit (1) with its data inputs receiving, via a data exchange multiplexer channel, the outputs of the crane parameter recording peripherals (71...7m) comprising, at least, one crane equipment travel pickup, and with outputs wired to crane parameter recorder (3) with real-time counter, display unit (4), preventive signaling unit (5), actuator (6) and external memory (2) communicating, via a two-way data exchange channel, with the digital computing unit. The system comprises, at least, one indicator (8) of the crane equipment crossing of, at least, one check point within the crane operating range, the said indicator being connected to the digital computing unit additional data input adapted to correct the crane equipment travel pickup readings in compliance with the signals generated by the aforesaid indicator.

EFFECT: higher reliability of the crane coordinate protection system operation.

1 dwg

 

The invention relates to the field of lifting and transport machinery and can be used in control systems and protection of cranes.

According to the requirements of normative documents cranes are equipped with instruments and safety devices of various types: limiters of the labour movement, limiters load-carrying capacity or load moment devices coordinate protection, etc. a part of such devices are position sensors working equipment.

Known security cranes with floating crane equipment containing digital computing unit, to the information input of which is connected multiplex channel of communication peripherals registration parameters of the crane, including the displacement sensors of the equipment of the crane and to the outputs - Registrar settings of a crane with a real time clock, unit a visual indication that the unit alarms and Executive unit, and the external storage device connected to the digital computing unit two-way channel of communication (see, for example, RF patent for useful model №38747, VS 23/90, 10.07.2004). The system described in the patent of Russian Federation №38747, used in the integrated device security PMC-B (Limiter on the power tower crane PMC-B. The user guide. LGFI-RA, JSC "Arzamas instrument plant", p.1-19, 48-49). The device of the PMC-B carries out the correction of the position sensor load-lifting crane on crane road when its at zero, which coincides with the finding of the crane at the point of actuation of the limit switch. Finding the crane at this point is only associated with the check limit switch before working with simultaneous correction of the position sensor faucet. However, under certain circumstances, for example, due to slipping of the wheels of the crane, which is connected to the displacement transducer, "care" of sensor readings during the work shift may reach a critical value, which will cause incorrect operation of the coordinate protection of the crane.

The present invention is to create a lifting crane with high accuracy of determining the position of his equipment due to repeated adjustments of the sensor moving equipment of the crane is in operation.

Thus, the technical result achieved is expressed in the increase of the reliability of the coordinate protection of the crane.

Problem solving and achievement of the technical result is ensured by the fact that systems the security of the load-lifting crane floating crane equipment, a digital computing unit, to the information input of which is connected multiplex channel data outputs of the peripheral device registration parameters of the crane, including at least one displacement sensor equipment of the crane and to the outputs - Registrar settings of a crane with a real time clock, unit a visual indication that the unit alarms and Executive unit, and the external storage device connected to the digital computing unit two-way channel of communication, according to the invention is equipped with at least one detector crossing equipment of the crane, at least one control point in the working area of the crane is connected for additional information input digital computing unit, and the latter is adapted to correct the sensor readings move equipment crane signals with the specified alarm.

The drawing shows a functional diagram of the proposed system safety rail tower crane installed on the Strela cargo truck.

The security system includes a digital computer unit 1, the external storage device 2, the Registrar 3 parameters faucet with built-in real time clock, block 4 visual display unit 5 alarms, Executive unit 6, the peripheral device 71...7mthe registration parameters of the crane, including the sensor 71move cargo crane on the crane path and the sensor 72move the trolley along the guide belts boom of the crane, and the detectors 81...8ncrossing equipment crane control points located in the working area of the crane, including the detector 81crossing the suspension device of the crane control (reference) point, located on the rail crane path, and the detector 82crossing freight trolley control (reference) point in the direction of travel of the cargo truck.

The outputs of the peripheral devices 71...7mthe registration parameters of the crane and the outputs of the detectors 81...8nconnected multiplex channel of communication to the relevant information to the digital inputs of the computing unit 1. The external storage device 2 is connected with a digital computing unit two-way channel of communication. To the outputs of the digital computing unit connected Registrar 3 parameters of the crane, block 4 visual indication, block 5 alarms and Executive unit 6.

Peripherals 71...7mthe registration parameters of the crane is placed in a different AOR is Ah crane and include analog sensors with analog-to-digital converters and digital sensors. Analog sensors measure the smoothly changing parameters of the crane and is used to measure the sensitive elements with linear and non-linear output signal. Digital sensors measure the discrete parameters of the crane.

The detectors 81...8ncrossing equipment crane control points located in the working area of the crane, represent a contact or contactless discrete sensors (capacitive, inductive, optical, ultrasonic, sensitive, etc).

The arrangement of the control (reference) points on the guide rails of the crane and the trolley is determined during the preliminary analysis of the crane, on the assumption that a given point of the crane and its cargo truck crossed the maximum number of times during their work. The number of control points on the guide rails of the crane and trolley may be greater than described above. This allows you to repeatedly adjust the sensors move and thereby improve the accuracy of determining the position of the crane and trolley.

The system works as follows.

When operating crane peripherals 71...7mprovide measurements of the parameters characterizing the loading of the crane and the location of the lifting equipment. Values working the x parameters of the crane on the multiplex channel data are transmitted in digital computing unit 1, who, working under the program specified in the design of the safety device and the pre-recorded in the external storage device 2, compares the actual loading crane with a maximum allowable, and compares the actual position of lifting equipment with a zone of valid provisions, and depending on the results of the comparison outputs a signal to the control unit 6 to allow or deny certain types of movements of the crane.

At the time of the passage of the crane control points located on crane road, the coordinates of which are pre-recorded in the external storage device 2, the detector 81in digital computing unit 1 receives a signal about the location of the crane at the point of adjustment. Digital computing unit corrects the sensor 71move the crane on the crane paths on the signals of the detector 81. Similarly adjusts the sensor 72move the trolley along the guide belts boom crane according to the signals of the detector 82.

All kinds and directions of movements are transmitted from the digital computing unit 1 in the recorder 3 parameters and recorded it in the mode of the current time with the time control timer for determining the Oia time of individual mechanisms and analyze the operation of the crane, that allows to carry out maintenance work. In addition, in the digital computing unit 1 can determine the movements that are in the range close to the boundary values, displaying information in block 4 visual indication and audible signal unit 5 alarms to alert the driver of approaching to the boundary values of the parameters of the crane, such as approaching the end or the beginning, as well as approaching the maximum and minimum values of the height of flight and turn.

The claimed system may be manufactured with the use of modern components and technology. For the implementation of digital computing unit, you can use the MSP430F149 microprocessor firm Texas Instruments (USA) or other microprocessors of this type. As a peripheral device registration parameters of the crane may be used commercially available products Arzamas instrument plant, such as analog sensors displacement LGFI, LGFI, LGFI and their execution, or new development of digital sensors, in particular the force sensor digital DOC LGFI, and similar equipment other instrument-making plants. As alerters can be used contactless switches manufactured by CJSC Scientific-production company "Mega -", Kaluga.

Security system lifting crane floating crane equipment containing digital computing unit, to the information input of which is connected multiplex channel data outputs of the peripheral device registration parameters of the crane, including at least one displacement sensor equipment of the crane and to the outputs - Registrar settings of a crane with a real time clock, unit a visual indication that the unit alarms and Executive unit, and the external storage device connected to the digital computing unit two-way channel of communication, characterized in that it is equipped with at least one detector crossing equipment of the crane, at least one reference point located in the working area of the crane is connected to the additional information input digital computing unit, and the latter is adapted to correct the sensor readings move equipment crane signals with the specified alarm.



 

Same patents:

FIELD: transport.

SUBSTANCE: invention relates to machine building and can be used in control protection systems of electrically-driven load lifting machinery. The system incorporates a digital computing unit (1) with its data inputs connected, a multiplexer data exchange channel, with the crane parameter recording peripherals, while its outputs are connected with crane parameter recorder (3) with a real-time counter, display unit (4), nonurgent alarm unit (5), actuator unit (6) and external memory unit (2) connected to the digital computing unit by a duplex data exchange channel. The system comprises the crane supply voltage parameter meters (81...8n) with their outputs connected, via the multiplex data exchange channel, to additional crane parameter recorder data inputs, those of the computing unit and the display. The digital computing unit is designed to compare the measured voltage with tolerable supply voltage parameters, to generate crane motions inhibiting signals in the case of the supply voltage parameters falling beyond tolerances for crane control system, to generate signals inhibiting certain types of the cranes motions in the case of the crane drives supply voltage falling beyond tolerances and to generate sound and light nonurgent alarm signals under the aforesaid conditions.

EFFECT: higher reliability of the crane operation.

2 cl, 1 dwg

FIELD: transportation.

SUBSTANCE: in compliance with the proposed method, with electric key set up, loads are uplifted in turn, their weights making m0, ..., mi-1, mi where i=2, 3, ..., and the motor shaft respective rpm making n0, ..., ni-1, ni being recorded by means of the accelerometer arranged on the base plate or the crane motor bed are memorised. The accelerometer output signal is subjected to spectral analysis with the frequency whereat the motor bed vibration fundamental amplitude is determined corresponding to the motor shaft rpm. Now, proceeding from the data obtained, the dependence of the motor rpm upon the uplifted load n=f(m) is derived to be memorised along with the known tolerable uplifted load weight value. Now, uplifted the load, the motor shaft rpm value is continuously measured by accelerometer to define, proceeding from n=f(m), the load weight. If this weight exceeds the tolerable value, audio and visual warning signals are output and the crane if cut off.

EFFECT: higher reliability of the crane capacity limiter.

6 dwg

FIELD: hoisting-and-transporting mechanical engineering.

SUBSTANCE: invention can used in the crane control and safety systems. Method consists in transfer of control signals from remote control board (RCB) located outside the crane using a two-way line of wireless communication, measuring the working parameters, converting measured sizes into digital signals, defining safe loads and limiting positions of the crane structural components and switching off its mechanisms on reaching limiting values, recording the crane operating and data signals and time of their arrival into long-term nonvolatile memory to be read out in case of need, and also their remote transfer to the dispatcher control located outside the crane. In addition, RCB outputs the instructions to transfer the crane data and control signals to be written down into RCB nonvolatile memory to be read out in case of need by transmitting the signals to the dispatcher control station, registration and storage of data on the crane operation. Here, note that two-way wireless communication lines are used to this end.

EFFECT: higher reliability of control and registration of crane working parameters.

1 dwg

FIELD: transportation.

SUBSTANCE: adjustment consists in regulation of signals in channels of measurement of boom load, overhang or inclination angles by adding and/or multiplying these signals with the signals corresponding to the adjusting parameters the values of which are preliminary defined and stored in power-independent memory of the safety device. Regulation is made without of reference cargoes proceeding from the conditions of independence of the results of measurement of the lifted and moved cargoes upon the boom length and inclination angle. Values of adjusting parameters are defined, allowing for the boom deflection, as the constants or functions of the boom overhand, length and inclination angle by commands of the operator/crane operator or automatically. The principle of definition of adjusting parameters is based, in particular, on their calculation as unknown factors in a set of the equations derived using the crane mathematical model. The said device contains transducers of the load-lifting crane operating parameters with digital or analog outputs and the digital computing device with power-independent memory.

EFFECT: opportunity of checking the accuracy of the safety device operation without check cargoes is ensured and efficiency of protection of the load-lifting crane is increased.

16 cl, 1 dwg

FIELD: construction.

SUBSTANCE: series of inventions refers to the sphere of tower crane operation security engineering. The method in question presupposes exchange of information on the cranes locations, movements and equipment loads between the control and protection devices of all the "n" jointly operating tower cranes. Additional features: identification of the position of each crane and/or its equipment against the construction site plan, conventional graphical visualisation of the position within the construction site territory of a specified crane and/or its equipment (as well as that of the "neighbouring" cranes and equipment related to them) on the crane display. When the crane operator initiates relocation of equipment related to crane Ki the following is carried out: the intended equipment motion path tracing, display graphical visualisation of the intended motion path(s) of the equipment related both to crane Ki and the "neighbouring" crane(s) whose equipment is currently in motion (by means of exchange of information between the control and protection devices), estimation of the minimum distance between the above paths, graphical visualisation of the point of intersection on the crane Ki display and generation of a signal disabling operation of this crane equipment and light and sound alarm signals in case the paths as having been traced happen to intersect. In order to enable further motion of the crane Ki equipment there is an additional line to be plotted by the crane operator which is intended to restrict motion of the crane equipment (the line becomes graphically visualised on the crane Ki, screen); in case the limiting line has been plotted erroneously operation of the crane Ki equipment and mechanisms is automatically disabled when at the paths intersection point.

EFFECT: improving the hoisting cranes operation standard of safety.

4 cl, 3 dwg

FIELD: mechanical engineering.

SUBSTANCE: invention relates to load-lifting and transportation equipment and it can be used in protection systems of load-lifting cranes. According to proposed method, tolerable loads are determined and memorized in form of function of spatial position of boom, measuring current value of load in process of operation of crane, comparing it with tolerable load and generating warning signal or signal to crane mechanisms aimed at limiting or preventing overload. In process of lifting and/or shifting of load, change of linear or angular position of crane part is revealed additionally whose change is not allowed in current stage of load lifting and/or shifting process. Depending on value of said change of position, additionally warning information signals or crane mechanism control signals are formed aimed either to prevent further increase in said change or to return said part of crane, for instance, boom, into initial position. Protection of crane from overload is implemented with due account both of absolute value and change of value of angle of tilting of crane component part from horizontal or vertical position in process of lifting and/or shifting of load.

EFFECT: improved safety of crane in operation.

21 cl, 1 dwg

FIELD: mechanical engineering; lifting and transportation machinery.

SUBSTANCE: invention can be used in automated protection and control systems of load-lifting cranes. Load-lifting machines drive is controlled by operator acting onto control member, transmission of shifting of said member to control member of drive made to shift any mechanism of load-lifting machine depending on movement of control member, and preliminary determination of tolerable value of at least one parameter characterizing load and/or spatial position of boom or load-gripping member of load-lifting machine, keeping the parameter value in memory, measuring said parameter by direct or indirect method in process of operating of load-lifting machine, comparing measured value with tolerable value and subsequently shaping drive control signal. Control signal is used to interlock shifting of drive control member and if, necessary, to reset member in neutral position. Interlocking of drive control member is done by mechanical blocking of transmission of control member shifting to drive control member or mechanical interlocking of displacement of said member.

EFFECT: increased reliability.

6 cl, 3 dwg

FIELD: mechanical engineering; tower cranes.

SUBSTANCE: method includes periodical continuous polling during which signals are obtained, recorded and memorized which correspond to values of load characteristic of crane, crane geometry and operation conditions, obtained signals are compared with values of characteristics introduced into crane control system before its operation, and after comparing of signals received at polling with tolerable values of characteristics, if they exceed tolerable characteristics, commands of crane operator are cancelled. Introduced additionally into crane control system are parameters of crane operation conditions, speed of wind, ambient temperature and crane condition parameters, load, vibration, temperature of crane drive mechanism lubricants, and voltage in electrical devices. Maximum tolerable values of said parameters are introduced into control system to limit operation of crane drives at which operation of crane should be stopped or can be executed at introduction of definite limitations into operation of crane drive as to speed, accelerations, combined or successive travel motions of drives, obtained signals concerning operation and state of crane are compared with tolerable values, and possibility and conditions of execution of operator's commands are determined, command is left without changes or definite limitations are applied to operation of crane by introducing corresponding corrections to operator's command or execution of command is prohibited according to preset program.

EFFECT: improved safety of operation of tower crane.

1 dwg

FIELD: mechanical engineering; lifting and transportation machine building.

SUBSTANCE: invention can be used in control and protection system of load-lifting cranes. Proposed system contains load pickups 1, boom tilting angle pickups 5, parameters indicator 6 and series-connected tolerable load setting unit 8, comparator 9 and actuating unit 10 whose output is connected to first input of parameters recorder 11, unit to record designed values of parameters 12, correction unit 3, load weight check unit 2, scaling unit 4, variable coefficients unit 14, change-over switch 15, boom deflection recording unit 13 and boom reach calculating unit 7.

EFFECT: improved safety of crane owing to increased accuracy of control of its parameters.

2 cl, 2 dwg

FIELD: lifting and transportation mechanical engineering, namely system for ensuring safety of operation of lifting equipment; possible use for preventing dangerous approach of jib type cranes with telescopic crane arms to power lines.

SUBSTANCE: device for detection of electric field of power line contains an antenna and antenna amplifier, where at least a part of antenna is made in form of flat capacitor mounted on rotary device of crane, and current-conductive plates of flat capacitor are connected to input of antenna amplifier. Positioning of antenna in form of flat capacitor not on the head of crane arm, but on rotary device, ensures safety of crane operation during installation of fly jib, and also results in increased comfort of operation, particularly, low length of communication line and exclusion of drum for winding cable, removing causes for cable tearing under conditions of real applications.

EFFECT: increased efficiency.

2 cl, 4 dwg

FIELD: transportation.

SUBSTANCE: adjustment consists in regulation of signals in channels of measurement of boom load, overhang or inclination angles by adding and/or multiplying these signals with the signals corresponding to the adjusting parameters the values of which are preliminary defined and stored in power-independent memory of the safety device. Regulation is made without of reference cargoes proceeding from the conditions of independence of the results of measurement of the lifted and moved cargoes upon the boom length and inclination angle. Values of adjusting parameters are defined, allowing for the boom deflection, as the constants or functions of the boom overhand, length and inclination angle by commands of the operator/crane operator or automatically. The principle of definition of adjusting parameters is based, in particular, on their calculation as unknown factors in a set of the equations derived using the crane mathematical model. The said device contains transducers of the load-lifting crane operating parameters with digital or analog outputs and the digital computing device with power-independent memory.

EFFECT: opportunity of checking the accuracy of the safety device operation without check cargoes is ensured and efficiency of protection of the load-lifting crane is increased.

16 cl, 1 dwg

FIELD: transportation.

SUBSTANCE: device contains the base and the force pickup attached thereto, two support elements and the deformable element connecting free ends of the support elements and attached, by its central part, to force pickup. The device additionally contains the electronic device made to compare the force pickup output signal with that corresponding to the maximal lifting capacity of the mechanism, and to generate the signal to lock its operation, and/or a warning light and/or sound signal depending on results of this comparison. The device, a second version, contains the force pickup, two support elements and two deformable elements jointing the support elements. The force pickup is attached to the central parts of deformable elements. One deformable element is made either elastic or in the form of rigid parts with elastic hinges.

EFFECT: higher safety in operation of the load-lifting mechanism and accuracy of measurement of the cable tension.

12 cl, 3 dwg

FIELD: construction.

SUBSTANCE: series of inventions refers to the sphere of tower crane operation security engineering. The method in question presupposes exchange of information on the cranes locations, movements and equipment loads between the control and protection devices of all the "n" jointly operating tower cranes. Additional features: identification of the position of each crane and/or its equipment against the construction site plan, conventional graphical visualisation of the position within the construction site territory of a specified crane and/or its equipment (as well as that of the "neighbouring" cranes and equipment related to them) on the crane display. When the crane operator initiates relocation of equipment related to crane Ki the following is carried out: the intended equipment motion path tracing, display graphical visualisation of the intended motion path(s) of the equipment related both to crane Ki and the "neighbouring" crane(s) whose equipment is currently in motion (by means of exchange of information between the control and protection devices), estimation of the minimum distance between the above paths, graphical visualisation of the point of intersection on the crane Ki display and generation of a signal disabling operation of this crane equipment and light and sound alarm signals in case the paths as having been traced happen to intersect. In order to enable further motion of the crane Ki equipment there is an additional line to be plotted by the crane operator which is intended to restrict motion of the crane equipment (the line becomes graphically visualised on the crane Ki, screen); in case the limiting line has been plotted erroneously operation of the crane Ki equipment and mechanisms is automatically disabled when at the paths intersection point.

EFFECT: improving the hoisting cranes operation standard of safety.

4 cl, 3 dwg

FIELD: mechanical engineering.

SUBSTANCE: invention relates to load-lifting and transportation equipment and it can be used in protection systems of load-lifting cranes. According to proposed method, tolerable loads are determined and memorized in form of function of spatial position of boom, measuring current value of load in process of operation of crane, comparing it with tolerable load and generating warning signal or signal to crane mechanisms aimed at limiting or preventing overload. In process of lifting and/or shifting of load, change of linear or angular position of crane part is revealed additionally whose change is not allowed in current stage of load lifting and/or shifting process. Depending on value of said change of position, additionally warning information signals or crane mechanism control signals are formed aimed either to prevent further increase in said change or to return said part of crane, for instance, boom, into initial position. Protection of crane from overload is implemented with due account both of absolute value and change of value of angle of tilting of crane component part from horizontal or vertical position in process of lifting and/or shifting of load.

EFFECT: improved safety of crane in operation.

21 cl, 1 dwg

FIELD: mechanical engineering; lifting and transportation machine building.

SUBSTANCE: invention can be used in control and protection system of load-lifting cranes. Proposed system contains load pickups 1, boom tilting angle pickups 5, parameters indicator 6 and series-connected tolerable load setting unit 8, comparator 9 and actuating unit 10 whose output is connected to first input of parameters recorder 11, unit to record designed values of parameters 12, correction unit 3, load weight check unit 2, scaling unit 4, variable coefficients unit 14, change-over switch 15, boom deflection recording unit 13 and boom reach calculating unit 7.

EFFECT: improved safety of crane owing to increased accuracy of control of its parameters.

2 cl, 2 dwg

FIELD: mechanical engineering.

SUBSTANCE: invention relates to safety and control systems of load lifting cranes. Proposed method of supply of measuring and control component part of safety and control system arranged on boom or tackle block of load-lifting crane comes to use of self-contained supply source with automatic charging the source from generator - converter of mechanical energy of moving load or boom wire rope of load-lifting crane or block directing or supporting the wire, rope, into electric energy. According to invention, said component part of safety and control system of crane provides measuring of at least one operating parameter and control of loads, particularly, marker light and/or headlight. To charge self-contained supply source, in additional of wire rope motion energy, use can be made of energy of external mechanical actions, solar energy or heat energy of surrounding medium. Transmission of data between component parts of system can be provided by wireless data exchange channel.

EFFECT: facilitated maintenance, increased reliability, provision of serviceability of safety and control system of crane.

16 cl, 2 dwg

FIELD: mechanical engineering; load-lifting cranes.

SUBSTANCE: invention can be used in control and protection system of load lifting cranes to preclude overloads and damage in crane mechanisms. Proposed system consists of separate parts made in form of at least one electronic unit and pickups measuring parameters of load-lifting crane. To supply electronic circuit of any component of safety system use is made of self-contained supply source which is constantly or periodically charged. Conversion of mechanical energy of load or boom rope, or energy of measured parameter of operation of load-lifting crane, mechanical energy of measured load in boom or load rope, angle of azimuth length of boom, etc or hydraulic energy of measured pressure in hydraulic cylinder or in hydraulic boom lifting/lowering motor, load-gripping member or slewing platform of load-lifting crane or energy of external mechanical, acoustic or heat ambient medium onto parameter pickup of load lifting crane into electric energy is provided.

EFFECT: simplified servicing, improved reliability, provision of serviceability of safety system at cut off supply.

23 cl, 1 dwg

FIELD: materials handling facilities; crane safeguards.

SUBSTANCE: invention relates to overload and damage protection of load-lifting cranes and cranes-pipelayers. Proposed method comes to adjusting at least one signal in at least one load measuring channels and/or reach, and/or luffing angle to provide correspondence of safeguard switch off characteristic to preset load characteristic of crane by adding and/or multiplying results of direct or indirect measurement of at least one of crane operating parameters and signals corresponding to adjustment parameters whose values are stored in non-volatile memory of safeguard. Values of adjustment parameters are determined to provide independent switching off characteristic of safeguard from direction and/or speed of boom movement or speed of movement of crane load gripping members. Different adjustment parameters for different directions and/or speeds of boom and/or load-gripping member can be set.

EFFECT: simplified mounting and servicing of safeguards on crane, improved accuracy of realization of protection functions.

18 cl, 2 dwg

FIELD: mechanical engineering; load-lifting cranes.

SUBSTANCE: invention relates to overload and damage protection of load-lifting cranes. According to proposed method, to prevent emergencies preliminarily determined are tolerable values of parameters characterizing load, and/or spatial position of crane boom and/or load gripping member which are memorized and, in process of operation of crane, one of said parameters is measured and compared with tolerable value, and signals are formed to control crane actuators aimed at preventing excess of tolerable value by measured parameter. Determination of parameters characterizing spatial position of boom, load-gripping member, supports, construction members of other crane or any obstacle in height is based on measuring values of barometric pressure in corresponding points and subsequent calculation of heights. Construction is simplifier, and effective protection of spatial position pickups of crane from mechanical damages if provided. Safety of load-lifting crane in operation is improved owing to accurate and effective measuring of distance between crane and obstacles and prevention of emergencies caused by tilting of fixed platform or portal of crane from horizontal position and in case of approaching thunderstorm.

EFFECT: improved safety of load-lifting crane.

25 cl, 1 dwg

FIELD: materials loading machinery.

SUBSTANCE: invention relates to load-lifting crane protection and control devices and to method of crane control after interlocking of crane motion by protection system. proposed method consists n determining tolerable values of parameters characterizing load and/or spatial position of crane boom-or load-gripping member, and/or distance to transmission line, recording the parameters and measuring in process of operation of load-lifting crane by direct or indirect method of at least of one of said parameters and comparing measured value with tolerable one and subsequent forming of control signals by at least one of operating devices of load-lifting crane designed to preclude excess of tolerable value by said parameter. Additionally, by analyzing values and/or changes of parameters of operation of load-lifting crane, prehistory of operation of load-lifting crane is revealed and recorded which leads to forming of said control signals aimed at precluding excess of tolerable value by said parameter, and order of formation of control signals after prevention of said excess is set depending on indicated prehistory.

EFFECT: improved safety of operation of load-lifting crane and provision of convenience in operation.

16 cl, 1 dwg

FIELD: transport.

SUBSTANCE: invention relates to machine building and can be used in control protection systems of electrically-driven load lifting machinery. The system incorporates a digital computing unit (1) with its data inputs connected, a multiplexer data exchange channel, with the crane parameter recording peripherals, while its outputs are connected with crane parameter recorder (3) with a real-time counter, display unit (4), nonurgent alarm unit (5), actuator unit (6) and external memory unit (2) connected to the digital computing unit by a duplex data exchange channel. The system comprises the crane supply voltage parameter meters (81...8n) with their outputs connected, via the multiplex data exchange channel, to additional crane parameter recorder data inputs, those of the computing unit and the display. The digital computing unit is designed to compare the measured voltage with tolerable supply voltage parameters, to generate crane motions inhibiting signals in the case of the supply voltage parameters falling beyond tolerances for crane control system, to generate signals inhibiting certain types of the cranes motions in the case of the crane drives supply voltage falling beyond tolerances and to generate sound and light nonurgent alarm signals under the aforesaid conditions.

EFFECT: higher reliability of the crane operation.

2 cl, 1 dwg

Up!