Technique for erecting solid core foundation slab

FIELD: construction, surface mounted structures.

SUBSTANCE: invention pertains to construction and can be used when erecting buildings with considerable loading on a compressed clay bed. The technique for erecting a solid core foundation slab with closed vertical walls, directed downwards, involves designing a foundation pit, trenches, reinforcing them with frames and filling with concrete, and joining the surface with a slab. The trenches are dug from the bottom of the foundation with different depths. The trenches are then joined, thereby forming several closed contours, whose depth increases from the central part of the slab to the edges. The technical outcome is increase in strength of the foundation slab due to effect of the square shaped closed edges in the ground.

EFFECT: increased strength of the foundation slab.

3 dwg

 

The invention relates to the construction and can be used in the construction of buildings with significant loadings on non-uniformly compressible clay base.

The increase in the number of storeys of buildings leads to increased loads on the base, and hence the emergence of effort in the construction of above-ground parts from the non-uniform sediment. In such cases it is advisable to use foundations in the form of a rigid solid plates. In addition to such foundations can increase the value of the average residue in 1.5 times (see SNiP 2.02.01-83*, p.47-48, Appendix 4, note 5).

The rigidity of the plates, providing uniformity sediment above-ground part of the building can be achieved by increasing their thickness, which increases their weight and more load on the Foundation soil.

Known foundations cylindrical tanks with the device, the annular wall around the tank (and foundations tanks / Ukhvanov, Poonawala, Rahmangoolov, Sensation, M., stroiizdat, 1989, p.41, figure 2.6). For the annular walls using precast concrete prismatic piles scored at the distance of three diameters of the piles from each other or staggered. On top of them combine monolithic reinforced concrete raft.

A disadvantage of the known solution is that for large tanks is th height and diameter, when the depth of the annular shroud equal to 0,7-0,8D, need driven piles considerable length. This, in turn, will increase the cost of the Foundation.

Closest to the proposed invention is a method of construction in clay soils slab Foundation increased rigidity (patent No. 2276708, 02D 27/01, 2006), including development in the Foundation soil excavation, trenches, reinforcing their frames and filled with concrete, the Association on top of the stove.

A disadvantage of the known solutions for this Foundation is the same depth trench-edge directed downwards, while the desired depth, preventing the expansion of the Foundation soil during its compression, depends on the width of the reinforced edges of the Foundation.

Technical solution to the problem is to increase the rigidity of the base plate due to the work of several enclosed in the form of a rack of ribs arranged in the ground.

The task is achieved in that in the method of construction of a solid slab Foundation with closed vertical walls, pointing downwards, including the development of the Foundation soil excavation, trenches, their reinforcement cage and pour, pooling on top of the stove, according to the invention of the trench tear from the pit bottom at different depths, then in terms of the trench unite, forming several who are closed paths, increasing the depth of the Central part of the plate to the edges.

The novelty of the claimed proposal due to the fact that in the ground formed a closed thin-walled monolithic design and an array of trapped soil Foundation, working in conjunction with vertical walls that restrict horizontal movement of the Foundation soil.

The invention is illustrated by drawings, where figure 1 shows a diagram of a plate in plan, figure 2 is a longitudinal section of the plate a-a and figure 3 - cross section of the plate-Century

The method of construction of a solid slab Foundation in the following sequence. In soils pre-cut pit 1, then tear off the trench 2, connecting them to each other, forming a closed contours 3. The depth of the trenches 2 is equal to 0.2 to 0.4 of the width of the closed circuit 3. In trench 2 lower reinforcing frames, the editions of which connects with the valve plate 4 and fill with concrete. The result is the formation of closed thin-walled monolithic circuits 3, increasing in depth from the Central portion to the edges of the plate 4, the split base within the vertical walls of the cells 5.

The method of construction of a solid slab Foundation with closed vertical walls, pointing downwards, including the development of the Foundation soil excavation, trenches, reinforcing their frame is filled with concrete, combining top plate, wherein the trench tear from the pit bottom at different depths, then in terms of the trench unite, forming several loops, increasing in depth from the Central part of the plate to the edges.



 

Same patents:

FIELD: construction, particularly to reconstruct buildings and building structures.

SUBSTANCE: foundation comprises supports, sheath freely formed in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Cement mix layer, metal arch trusses and reinforced concrete layer are serially arranged on ground inside area defined by foundation. Metal sheets are laid on arch trusses and connected with each other through welded joints to create flexible sheath. Pre-stressed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath. In the second embodiment foundation comprises support, sheath freely arranged in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Ground mix layer reinforced with cement mix, metal sheets and reinforced concrete layer are serially located on ground inside area defined by foundation. Metal sheets are bent along predetermined profile and connected with each other to create sheath. Relaxed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath.

EFFECT: increased operational reliability.

4 cl, 1 dwg, 1 ex

FIELD: construction, particularly to erect foundations on natural bases.

SUBSTANCE: shallow foundation comprises support mats and foundation building blocks. Support mats have through orifices along mat perimeters. Upper parts thereof have extensions shaped as truncated cones and adapted to immerse piles in ground as load increases during structure overbuilding.

EFFECT: increased load-bearing ability.

2 dwg

FIELD: construction, particularly to erect multistory buildings on non-uniformly compressible clay base.

SUBSTANCE: method involves excavating crossing trenches in ground; filling the trenches with concrete and joining thereof with slab covering the trenches. Trenches are excavated from pit bottom for different depths. Lower trench parts are provided with widened abutment sections having reinforcement bars included therein. The reinforcement bars are used as non-stretched threads. Trenches and slab are reinforced with nettings. Cell centers of the slab are anchored.

EFFECT: increased rigidity of foundation slab due to provision of ribs in ground.

5 dwg

FIELD: construction, particularly to erect foundations in natural base.

SUBSTANCE: method involves driving pair of members pivotally connected with each other and provided with single bevels at lower ends thereof in ground; digging-out trench; installing guiding member on trench bottom; forcing plate members in ground up to plate members abutting upon guiding member and closing of beveled upper ends thereof; installing the similar pair of members having lengths exceeding that of the first pair in trench; driving above pair in ground up to upper beveled ends closing; concreting the trench.

EFFECT: increased load-bearing capacity of the foundation due to inclined members embedding and ground compaction under foundation bottom.

4 dwg

FIELD: building, particularly to erect bored cast-in-place foundations of increased load-bearing abilities including ones having bottom marks typical to shallow foundations.

SUBSTANCE: stepped foundation comprises bored cast-in-place sections formed with the use of auger. Lower foundation step includes four peripheral cylinders of Dp.l. diameters and heights equal to above diameters. Peripheral cylinder centers are located at apexes of square having side lengths equal to Dp.l.. Square center coincides with center of support. Central support abutting four peripheral cylinders of lower foundation step has four expanded parts with Dc.exp diameters determined as Dc.exp=(1.0-1.2)Dp.l. and cylindrical bore having diameter Dp.up determined as Dp.up=(0.6-0.8)Dp.l.. Foundation bottom is 0.7 m below ground surface. Foundation erection method involves forming drilled pile sections; serially drilling wells having daug.1 diameters as each peripheral cylinder having Dp.l. is forming; creating each peripheral cylinder having height equal to Dp.l. by supplying working material for above cylinder forming; filling remainder well section with ground material, particularly with ground excavated from above object. Auger having diameter, which provides necessary Dp.l. diameter is used. The auger provides usage of technological processes, which provides 1.05-1.1 increase of pile diameter in comparison with auger diameter daug.1 and 1.1-1.2 increase of ground pile diameter in comparison with daug.1 diameter. After four peripheral cylinders of lower foundation step creation well having daug.2 diameter is drilled by means of direct auger rotation and ground excavation to day surface. The well has center coinciding with central support center and depth selected so that the well reach tops pf peripheral lower step cylinders. Then lower expanded part of central support is formed, wherein the expanded part has expansion degree Bc.exp./daug.2 equal to 1.5-2.0. During cylindrical bore drilling the expanded part has expansion degree Dp.up/daug.2 equal to 1.2-1.5.

EFFECT: increased load-bearing capacity per foundation volume unit, extended field of technical means.

3 cl, 4 dwg

FIELD: building, particularly panel foundations for multistory buildings and structures, which apply non-uniform loads to ground base.

SUBSTANCE: method involves forming crossing slots in ground; reinforcing the slots with frames and concreting the slots. For panel foundation erection in clay ground pit is preliminarily dug in ground. Then crossing slots adapted for reinforcing frames receiving are created in pit ground, wherein the reinforcing frames have projected parts. Areas of reinforcing frames intersection are additionally reinforced along with connecting projected parts and concreting thereof to fill the slots.

EFFECT: increased operational effectiveness and reduced costs.

2 dwg

FIELD: construction, particularly new building erection and existent building reconstruction under any engineering-geological circumstances.

SUBSTANCE: foundation structure comprises shallow foundation and reinforcement members. Reinforcement members are made as vertical bars of precast or cast-in-place piles having diameters less than 200 mm and arranged along foundation perimeter. The piles are spaced a distance from outer foundation faces. The distance is equal to 0.1-0.5 of reinforcement member diameter. Distance between neighboring piles is equal to 2-4 reinforcement member diameters and reinforcement member length is 15-20 diameters thereof.

EFFECT: increased load-bearing capacity due to creating compressive operational conditions under different engineering-geological circumstances, increased dynamic rigidity of foundation base and reduced foundation deformation and vibrational amplitude.

9 dwg

The invention relates to the construction and erection of buildings and structures on freezing heaving soils

Foundation // 2223368
The invention relates to the field of construction area foundations-shells and can be used in industrial and civil construction

Foundation // 2223367
The invention relates to the field of construction area foundations-shells and can be used in industrial and civil construction

FIELD: construction, particularly new building erection and existent building reconstruction under any engineering-geological circumstances.

SUBSTANCE: foundation structure comprises shallow foundation and reinforcement members. Reinforcement members are made as vertical bars of precast or cast-in-place piles having diameters less than 200 mm and arranged along foundation perimeter. The piles are spaced a distance from outer foundation faces. The distance is equal to 0.1-0.5 of reinforcement member diameter. Distance between neighboring piles is equal to 2-4 reinforcement member diameters and reinforcement member length is 15-20 diameters thereof.

EFFECT: increased load-bearing capacity due to creating compressive operational conditions under different engineering-geological circumstances, increased dynamic rigidity of foundation base and reduced foundation deformation and vibrational amplitude.

9 dwg

FIELD: building, particularly panel foundations for multistory buildings and structures, which apply non-uniform loads to ground base.

SUBSTANCE: method involves forming crossing slots in ground; reinforcing the slots with frames and concreting the slots. For panel foundation erection in clay ground pit is preliminarily dug in ground. Then crossing slots adapted for reinforcing frames receiving are created in pit ground, wherein the reinforcing frames have projected parts. Areas of reinforcing frames intersection are additionally reinforced along with connecting projected parts and concreting thereof to fill the slots.

EFFECT: increased operational effectiveness and reduced costs.

2 dwg

FIELD: building, particularly to erect bored cast-in-place foundations of increased load-bearing abilities including ones having bottom marks typical to shallow foundations.

SUBSTANCE: stepped foundation comprises bored cast-in-place sections formed with the use of auger. Lower foundation step includes four peripheral cylinders of Dp.l. diameters and heights equal to above diameters. Peripheral cylinder centers are located at apexes of square having side lengths equal to Dp.l.. Square center coincides with center of support. Central support abutting four peripheral cylinders of lower foundation step has four expanded parts with Dc.exp diameters determined as Dc.exp=(1.0-1.2)Dp.l. and cylindrical bore having diameter Dp.up determined as Dp.up=(0.6-0.8)Dp.l.. Foundation bottom is 0.7 m below ground surface. Foundation erection method involves forming drilled pile sections; serially drilling wells having daug.1 diameters as each peripheral cylinder having Dp.l. is forming; creating each peripheral cylinder having height equal to Dp.l. by supplying working material for above cylinder forming; filling remainder well section with ground material, particularly with ground excavated from above object. Auger having diameter, which provides necessary Dp.l. diameter is used. The auger provides usage of technological processes, which provides 1.05-1.1 increase of pile diameter in comparison with auger diameter daug.1 and 1.1-1.2 increase of ground pile diameter in comparison with daug.1 diameter. After four peripheral cylinders of lower foundation step creation well having daug.2 diameter is drilled by means of direct auger rotation and ground excavation to day surface. The well has center coinciding with central support center and depth selected so that the well reach tops pf peripheral lower step cylinders. Then lower expanded part of central support is formed, wherein the expanded part has expansion degree Bc.exp./daug.2 equal to 1.5-2.0. During cylindrical bore drilling the expanded part has expansion degree Dp.up/daug.2 equal to 1.2-1.5.

EFFECT: increased load-bearing capacity per foundation volume unit, extended field of technical means.

3 cl, 4 dwg

FIELD: construction, particularly to erect foundations in natural base.

SUBSTANCE: method involves driving pair of members pivotally connected with each other and provided with single bevels at lower ends thereof in ground; digging-out trench; installing guiding member on trench bottom; forcing plate members in ground up to plate members abutting upon guiding member and closing of beveled upper ends thereof; installing the similar pair of members having lengths exceeding that of the first pair in trench; driving above pair in ground up to upper beveled ends closing; concreting the trench.

EFFECT: increased load-bearing capacity of the foundation due to inclined members embedding and ground compaction under foundation bottom.

4 dwg

FIELD: construction, particularly to erect multistory buildings on non-uniformly compressible clay base.

SUBSTANCE: method involves excavating crossing trenches in ground; filling the trenches with concrete and joining thereof with slab covering the trenches. Trenches are excavated from pit bottom for different depths. Lower trench parts are provided with widened abutment sections having reinforcement bars included therein. The reinforcement bars are used as non-stretched threads. Trenches and slab are reinforced with nettings. Cell centers of the slab are anchored.

EFFECT: increased rigidity of foundation slab due to provision of ribs in ground.

5 dwg

FIELD: construction, particularly to erect foundations on natural bases.

SUBSTANCE: shallow foundation comprises support mats and foundation building blocks. Support mats have through orifices along mat perimeters. Upper parts thereof have extensions shaped as truncated cones and adapted to immerse piles in ground as load increases during structure overbuilding.

EFFECT: increased load-bearing ability.

2 dwg

FIELD: construction, particularly to reconstruct buildings and building structures.

SUBSTANCE: foundation comprises supports, sheath freely formed in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Cement mix layer, metal arch trusses and reinforced concrete layer are serially arranged on ground inside area defined by foundation. Metal sheets are laid on arch trusses and connected with each other through welded joints to create flexible sheath. Pre-stressed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath. In the second embodiment foundation comprises support, sheath freely arranged in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Ground mix layer reinforced with cement mix, metal sheets and reinforced concrete layer are serially located on ground inside area defined by foundation. Metal sheets are bent along predetermined profile and connected with each other to create sheath. Relaxed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath.

EFFECT: increased operational reliability.

4 cl, 1 dwg, 1 ex

FIELD: construction, surface mounted structures.

SUBSTANCE: invention pertains to construction and can be used when erecting buildings with considerable loading on a compressed clay bed. The technique for erecting a solid core foundation slab with closed vertical walls, directed downwards, involves designing a foundation pit, trenches, reinforcing them with frames and filling with concrete, and joining the surface with a slab. The trenches are dug from the bottom of the foundation with different depths. The trenches are then joined, thereby forming several closed contours, whose depth increases from the central part of the slab to the edges. The technical outcome is increase in strength of the foundation slab due to effect of the square shaped closed edges in the ground.

EFFECT: increased strength of the foundation slab.

3 dwg

FIELD: constructional engineering.

SUBSTANCE: invention refers to constructions on heaving soils. House footing based on freezing through soils includes a rigid body with flanges and indents from soil side, footing indent inserts made of heat-insulating material, e.g. polystyrene foam at such ratio of flange and footing indent areas that soil pressure from the lower flange surface is not less than standard pressure of frost soil heaving, soil pressure from the lower insert surface is not exceeding design compression resistance of insert material. Also, the said footing contains supplementary heat insulation laid outside of the footing. The upper edge of supplementary heat insulation is passed from external edge of the footing in the form of interrupted inserts through rigid body of the footing and connected to supplementary heat insulation of opposite external edge of the footing. Relative area of interrupted inserts (β=Aint.ins./A0) is given by the relation β≤1-σmax/R, where Aint.ins. is sectional area of interrupted inserts, m2, A0 is gross sectional area of the footing within inserts arrangement regions, m2, σmax is maximum external load pressure in footing material, MPa, R is design resistance of footing material, MPa. Indents and flanges of the footing from soil side are alternating along footing length. Indents centres from soil sides are provided under interrupted inserts centres of supplementary heat insulation from each external edge of the footing.

EFFECT: possibility to lay foundation above the design depth of heaving soil frost penetration level.

4 dwg, 1 tbl

Basement structure // 2334050

FIELD: building.

SUBSTANCE: invention refers to construction of the basements of buildings. The basement structure of a building includes heat - and waterproofing layer (17, 18, 40) which is laid on a flat horizontal surface (51) layer of the material breaking capillary action. The basement structure includes a frame (31) which surrounds specified heat - and waterproofing layer (17, 18, 40), at least, in its top part, thus fixing integrity of basement structure in a horizontal plane and which serves for punctiform bracing of the building supported by basement structure. The specified basement structure is encapsulated with foil (111) from a metal material.

EFFECT: prevention of smell penetration in a building and water-proofing maintenance; possibility of fast and energy conserving erection of the basement.

8 cl, 8 dwg

Up!