Electric insulating composition

FIELD: cable engineering.

SUBSTANCE: proposed smoke-emitting plasticized PVC based polymeric composition used for manufacturing insulation and cable sheaths has following ingredients, mass by part: suspension polyvinyl chloride, 100; ester plasticizer, 40-90; lead stabilizer, 2-8; antimony trioxide, 2-10; zinc oxide, 2-4; boron acid, 2-5; ocher, 10-70; calcium stearate, 1-3; diphenylolpropane, 0.1-0.4.

EFFECT: enhanced heat resistance of composition, its compliance with requirements to smoking under conditions of burning, smoldering, and hydrogen chloride emission in burning.

1 cl, 2 tbl

 

The invention relates to a cable technique, namely to polymeric compositions based on plasticized polyvinyl chloride (PVC) with reduced Flammability, smoke in combustion conditions and corruption and hydrogen chloride during combustion, designed to isolate the inner and outer layers of wires and cables in terms of fire safety.

Wires and cables are often the cause of the fire and flame spread. In this regard, to their polymeric components of the insulation, the inner and outer shells are traditionally moved high requirements for Flammability. Recently, the requirements for the characteristics of the fire has expanded considerably, in particular, to reduce the allocation of corrosive gases during combustion, and smoke, which is a negative factor in case of fire in residential, domestic and industrial premises, as in flaming combustion and flameless combustion (smoldering).

In addition, polymeric materials according to normative-technical documentation requirements of physical-mechanical characteristics and save them at a certain level in operating conditions cable products in a wide range of temperatures, which allows you to judge their reliability and service life.

For slimming the Flammability of PVC compositions are generally fire-retardants, for example antimony trioxide, to reduce the smoke emission - temoporarily, for example carbonate fillers (principles V.I. flame-Retardants for polymeric materials. M.: Chemistry, 1980, p.7-25).

To impart incombustibility and reduce smoke generation during combustion plasticized PVC as flame retardants - demomodule combination of antimony trioxide, chlorinated paraffin, calcium carbonate and oxide of molybdenum (U.S. patent No. 4098748, 1978)

However, the increased Flammability specified means not high.

Known PVC composition containing a combination of flame retardants-depressants, including antimony trioxide, zinc oxide, boric acid, chalk and aluminium hydroxide (ed. mon. The USSR №1646278, 1995).

However, the reduction in smoke and hydrogen chloride during combustion is not high enough.

Also known insulating composition comprising polyvinyl chloride, ester plasticizer, a lead stabilizer, antimony trioxide, zinc oxide, boric acid, calcium carbonate trihydrate alumina and Aerosil (ed. mon. The USSR 1832700, 1996).

However, the reduction in excretion of hydrogen chloride during combustion and smoke in combustion conditions and corruption is not high enough.

Most similar to that proposed by a combination of traits from those known is insulating compositions the Oia, containing, in parts by weight: suspension PVC 100, ester plasticizer 40-80, lead stabilizer 3-7, calcium carbonate 30-500, the trihydrate of alumina 10-100, antimony trioxide 4-7,5, zinc oxide 0,7-1,9, boric acid of 0.4-0.6, BHT 0.1 to 0.6 and diphenylolpropane 0.1 to 0.6 (U.S. Pat. Of the Russian Federation No. 2195729, 2001).

This composition meets the level of smoke in the combustion conditions and corruption and the allocation of hydrogen chloride during combustion, but it is not a high heat resistance, which reduces the resource of cable products and restricts the field of application.

The task consisted in the development of electrical insulating composition having high heat resistance while maintaining low smoke generation during combustion and the corruption and the allocation of hydrogen chloride during combustion.

The technical result is achieved in that the insulating composition comprising a suspension polyvinyl chloride, ester plasticizer, a lead stabilizer, antimony trioxide, zinc oxide, boric acid, diphenylolpropane, further comprises the ochre with the content of Fe2About312-15 wt.% and calcium stearate in the following ratio of components, parts by weight: suspension PVC 100, ester plasticizer 40-90, lead stabilizer 2-8, antimony trioxide 2-10, zinc oxide 2-4, boric to the slot 2-5, ocher with the content of Fe2About312-15 wt.% 10-70, calcium stearate 1-3, diphenylolpropane of 0.1-0.4.

The compositions may contain the following components: suspension PVC brand C70 according to GOST 14332-78 known ester plasticizers, such as dioctylphthalate (DOP) and diisononylphthalate (DINP) according to GOST 8728-77, dioctylphtalate (DAP 789, DAP 810) according to GOST 8728-77 known lead stabilizers such as trehosnovnoy sulfate lead (Tossa) TU 6-09-098-75, dibasic phthalate lead (DFTS) TU 6-09-098-76, antimony trioxide (Sb2O3) TU 6-09-3267-84, zinc oxide (ZnO) TU 48-7-17-82, boric acid (H3IN3) according to GOST 18704-78, calcium stearate TU 6-09-4233-76, ochre on THE 301-10-019-90 with ISM. No. 1. In addition to the above components, electrical insulating composition may also contain other known additives target, in particular concentrates dyes in taken to the dosages.

Example: In working turbomeeting load in series, in amounts, provided the recipe (table 1), the suspension polyvinyl chloride, ester plasticizer, a lead stabilizer, antimony trioxide, zinc oxide, boric acid, diphenylolpropane, ochre, calcium stearate. After the temperature in turbometal reaches 90°the mixture is discharged into a cooler where it is cooled to 30°after which produced the lead extruding and granulating the mixture in the extruder at a temperature of 140° C-160°C.

From the obtained granulate is produced samples for testing. The resistance is determined in accordance with GOST 5960-72, limiting oxygen index (LOI) is determined according to GOST 12.1.044-89, maximum smoke density (DM) in terms of burning and decay is determined according to GOST 24632-81, separation of hydrogen chloride (LHCl%) is determined according to GOST R IEC 60754-1-99.

The composition according to the examples listed in table 1, the properties are shown in table 2.

As follows from the data presented offer insulating composition has a higher heat resistance than known, in equal numbers by level of smoke when burning and decay and excretion of hydrogen chloride.

12.
Table 1.

The composition of the polyvinyl chloride compositions (examples 1-8 according to the invention, 9-11 - comparative, 12 - prototype)
№№ p/p123456789101112 prototype
12
1.Suspension PVC100100100100100100100100100100100100
2.Ester plasticizer405065809060606035958050
3.Lead stabilizer246844561,5964
4.Antimony trioxide2468103571,55117
5.Zinc oxide222222222221,9
6.Boric acid222 222222220,6
7.Ochre with the content of Fe2O312-15 wt.%1025507040505560308050
8.Calcium stearate11,5232222,5140,50
9.Chalk, caso30000000000040
10.The aluminum trihydrate0000000000060
11.BHT000000000000,2
Diphenylolpropane0,30,30,30,30,30,30,30,30,30,30,30,3

Table 2.

The properties of the polyvinyl chloride compositions (examples 1-8 according to the invention, 9-11 - comparative, 12 - prototype)
123456789101112
The preservation of the relative elongation of 7 days at 100°,% 939498959390969582788083
DM - burning210202204198212206205209208207208205
DM - corruption173182179186178181183176183184182 180
LHCl%9,49,29,39,39,69,29,29,18,99,29,29,1
KI %32,533,132,933,332,932,833,233,633,033,132,933

Insulating composition comprising a suspension polyvinyl chloride, ester plasticizer, antimony trioxide, zinc oxide, boric acid, calcium stearate, diphenylolpropane, characterized in that it further contains an ochre with the content of Fe2O312-15 wt.% and calcium stearate in the following ratio of components, parts by weight:

Suspension PVC100
Ester plasticizer40-90
Lead stabilizer2-8
Antimony trioxide2-10
Zinc oxide2-4
Boric acid2-5
Ocher with the content of Fe2About312-15 wt.%10-70
Calcium stearate 1-3
The diphenylolpropaneof 0.1-0.4



 

Same patents:

FIELD: electrical engineering; polymeric compositions based on reduced-inflammability plasticized polyvinyl chloride.

SUBSTANCE: proposed suspended polyvinyl chloride based polymeric composition designed for insulating internal and external sheaths of wires and cables has following ingredients, mass percent: suspended polyvinyl chloride, 100; ester plasticizer, 45-70; chlorinated wax and/or chlorinated alpha-olefins, 15-20; tribasic lead sulfate, 5-7; calcium stearate, 1-2; aluminum hydroxide or magnesium hydroxide, 45-60; antimony trioxide, 5-10; diphenyl propane, 0.1-0.5; 4.4'-isopropylidenediphenol epoxy resin, 23-4; carbon black, 0.5-2.0.

EFFECT: reduced inflammability, enhanced volume resistivity, thermal stability, and melt fluidity of composition.

2 cl, 1 tbl, 11 ex

FIELD: insulation materials.

SUBSTANCE: invention relates to polyethylene composition for insulation of conductors and cables, which exhibits improved scorching resistance and consists of (i) polyethylene and scorching inhibitor having melting point under atmospheric pressure below 50°C and being compound depicted by general formula I, wherein R1 represents optionally phenyl-substituted С120-alkyl, С220-alkenyl, С320-alkynyl, С39-cycloalkyl, phenyl, or tolyl; R2 and R3, independently from each other, represent С120-alkyl optionally substituted by following substituents: phenyl, one or two hydroxyls, cyano group, formyl, acetyl, and -O-COR5; R5 represents С120-alkyl, С220-alkenyl, С320-alkynyl, or optionally hydroxyl-substituted С39-cycloalkyl; phenyl, 4-chlorophenyl, 2-methoxycarbonylphenyl, p-tolyl, 1,3-benzothiazol-2-yl, -(CHR6)nCOOR7, or -(CHR6)nCONR8R9, wherein n=1 or 2, R6 represents hydrogen atom or С16-alkyl; R7 С120-alkyl optionally interrupted with 1-5 O or S atoms, С57-cycloalkyl, phenyl, benzyl, or tolyl; R8 and R9 each represents hydrogen atom or С16-alkyl; R4 represents hydrogen atom or methyl; and (ii) organic peroxide. Composition may be extruded with minimum preliminary cross-linking, even at sufficient cross-linking rate. Polyethylene composition for insulation of conductors and cables with improved scorching resistance is described, which composition additionally contains an amine selected from group consisting of diphenylamine, 4-tert-butyldiphenylamine, 4-tert-octyldiphenylamine, 4,4'-di-tert-butyldiphenylamine, 2,4,4'-tris-tert-butyldiphenylamine, 4-tert-butyl-4'-tert-octyldiphenylamine, o,o', m,m'- or p,p'-di-tert-octyldiphenylamine, 2,4-di-tert-butyl-4'-tert-octyldiphenylamine, 4.4'-di-tert-octyldiphenylamine, 2,4-di-tert-octyl-4'-tert-butyldiphenylamine. This composition may be extruded with minimum preliminary cross-linking, even at sufficient cross-linking rate. Method for preparing cross-linked polyethylene composition is also disclosed. (I).

EFFECT: enhanced resistance against preliminary vulcanization at simultaneously preserved satisfactory vulcanization rate and density of cross linkages formed.

3 cl, 5 tbl

FIELD: electrical communication components; cables whose conductors are covered with polymeric insulation extruded about conductor.

SUBSTANCE: proposed cable has its conductors covered with insulation that has at least one component incorporating maximum 20, and best of all 15, mass percent of polymer characterized in high degree of extrudate swelling. This polymer is defined as that characterized in extrudate swelling degree over 55% and higher, best of all that having extrudate swelling degree over 65%. Best insulation has at least second component of high degree of cracking resistance under stress; therefore, minimal combination of these polymers will provide for insulation layer possessing unique combination of physical properties, including high degree of foaming, fine uniform cellular structure, reduced attenuation, and cracking resistance under stress which is capable of sustaining temperature of 100 °C over 100 h without cracking in spirally coiled state at stress level one-fold higher than outer diameter of insulation.

EFFECT: improved electrical characteristics and mechanical strength of insulation.

23 cl, 6 dwg, 3 tbl

FIELD: cable industry.

SUBSTANCE: proposed composition designed for insulating sheaths of cables and wires operating under high fire hazard conditions has following proportion of ingredients, part by mass: suspension polyvinyl chloride, 100; ester plasticizer, 35 - 65; lead stabilizer, 2 - 7; calcium carbonate, 5 - 45; aluminum oxide trihydrate, 20 - 100; antimony trioxide, 5 - 9; zinc oxide, 0.5 - 8; and newly introduced zinc borate, 0.5 - 8; calcium stearate, 1 - 3; calcium chloride, 0.1 - 2 or calcium oxide, 0.1 - 2.

EFFECT: enhanced fire resistance at low degree of smoke emission under fire conditions.

1 cl, 1 tbl

FIELD: cable industry.

SUBSTANCE: proposed composition designed for insulating general industrial cable and wire sheaths to reduce fire occurrences due to inflammation of cables and wires has following ingredients, mass percent: polyvinyl chloride suspension, 100; ester plasticizer, 25 - 75; lead stabilizer, 1 - 7; calcium stearate, 0.7 - 3; diphenylolpropane, 0.1 - 0.8; zinc oxide, 0.5 - 8; zinc borate, 0.5 - 5; calcium chloride, 0.1 - 2 or calcium oxide, 0.1 - 2; calcium carbonate, 5 - 90; antimony trioxide, 0.5 - 9; and carbon black, 1 - 8.

EFFECT: reduced inflammability and smoke-forming capacity due to introduction of zinc oxide, zinc borate, and calcium chloride or calcium oxide.

3 cl, 1 tbl

FIELD: electrical engineering.

SUBSTANCE: proposed polymeric insulating composition given in description of invention together with description of cables and wires covered with such composition to ensure their excellent performance in service has 60 to 90 mass percent of copolymer A of ethylene and α-olefin produced by copolymerization with aid of concentric catalyst and 40 to 10 mass percent of polyolefin resin B other than copolymer A and includes polyolefin incorporating grafted substituents with dipole moment 4 D or higher. One of alternative compositions uses semiconducting composition as semiconductor layer. In particular cases ethylene and α-olefin copolymer is produced by polymerization with aid of Ziegler-Natta catalyst.

EFFECT: facilitated production.

8 cl, 2 tbl

FIELD: cable industry.

SUBSTANCE: proposed composition designed for insulating and sheathing cables and wires meant for operation under high fire hazard conditions incorporates following ingredients, parts by weight: suspension polyvinyl chloride, 100; ester plasticizer, 30 - 70; tribasic lead sulfate, 2 - 6; calcium carbonate, 20 - 300; zinc oxide, 0.5 - 10; aluminum oxide trihydrate, 20 - 70; antimony trioxide, 3 - 8; zinc borate, 0.5 - 8; zinc stearate, 0.25 - 4. Zinc borate and stearate introduced in definite proportion into proposed composition have made it possible to improve fire-safety characteristics of the latter.

EFFECT: reduced emission of smoke and hydrogen chloride in burning, enhanced degree of inflammability.

1 cl, 1 tbl

FIELD: insulating materials for telecommunication cables.

SUBSTANCE: polyolefin insulation of conductors in hydrocarbon lubricant filled telecommunication cable which is then placed in junction box operating in the open is susceptible in particular to adverse impact of heat, oxygen, and moisture. In order to ensure reliable functioning of these conductors under mentioned conditions, use can be made of combination of one or more primary phenolic antioxidants chosen from N,N'-hexane-1.6-diilbis-(3(3.5-di-tertiary-butyl-4-hydroxyphenylpropionamide)), tris(3.5-di-tertiary-butyl-4-hydroxybenzyl)isocyanin-rhata, and tris(2-(3.5-di-tertiary-butyl-4-hydroxyhydrocinnamoyloxy)-ethyl)isocyanourate together wit one or more alkyl hydroxyphenyl alkanoylhydrazine metal deactivators.

EFFECT: enhanced oxidation resistance of polyolefin insulation of conductors.

8 cl, 1 tbl, 1 ex

The invention relates to the field of electrical engineering, in particular to electrical insulating compositions for the manufacture of insulation Marco different cables, including insulation of heat-resistant wires and cables, and insulation of wires and cables for use in corrosive environments

The invention relates to a cable technique, namely, halogen-free polymer composition for insulation and sheath cables

FIELD: insulating materials for telecommunication cables.

SUBSTANCE: polyolefin insulation of conductors in hydrocarbon lubricant filled telecommunication cable which is then placed in junction box operating in the open is susceptible in particular to adverse impact of heat, oxygen, and moisture. In order to ensure reliable functioning of these conductors under mentioned conditions, use can be made of combination of one or more primary phenolic antioxidants chosen from N,N'-hexane-1.6-diilbis-(3(3.5-di-tertiary-butyl-4-hydroxyphenylpropionamide)), tris(3.5-di-tertiary-butyl-4-hydroxybenzyl)isocyanin-rhata, and tris(2-(3.5-di-tertiary-butyl-4-hydroxyhydrocinnamoyloxy)-ethyl)isocyanourate together wit one or more alkyl hydroxyphenyl alkanoylhydrazine metal deactivators.

EFFECT: enhanced oxidation resistance of polyolefin insulation of conductors.

8 cl, 1 tbl, 1 ex

FIELD: cable industry.

SUBSTANCE: proposed composition designed for insulating and sheathing cables and wires meant for operation under high fire hazard conditions incorporates following ingredients, parts by weight: suspension polyvinyl chloride, 100; ester plasticizer, 30 - 70; tribasic lead sulfate, 2 - 6; calcium carbonate, 20 - 300; zinc oxide, 0.5 - 10; aluminum oxide trihydrate, 20 - 70; antimony trioxide, 3 - 8; zinc borate, 0.5 - 8; zinc stearate, 0.25 - 4. Zinc borate and stearate introduced in definite proportion into proposed composition have made it possible to improve fire-safety characteristics of the latter.

EFFECT: reduced emission of smoke and hydrogen chloride in burning, enhanced degree of inflammability.

1 cl, 1 tbl

FIELD: electrical engineering.

SUBSTANCE: proposed polymeric insulating composition given in description of invention together with description of cables and wires covered with such composition to ensure their excellent performance in service has 60 to 90 mass percent of copolymer A of ethylene and α-olefin produced by copolymerization with aid of concentric catalyst and 40 to 10 mass percent of polyolefin resin B other than copolymer A and includes polyolefin incorporating grafted substituents with dipole moment 4 D or higher. One of alternative compositions uses semiconducting composition as semiconductor layer. In particular cases ethylene and α-olefin copolymer is produced by polymerization with aid of Ziegler-Natta catalyst.

EFFECT: facilitated production.

8 cl, 2 tbl

FIELD: cable industry.

SUBSTANCE: proposed composition designed for insulating general industrial cable and wire sheaths to reduce fire occurrences due to inflammation of cables and wires has following ingredients, mass percent: polyvinyl chloride suspension, 100; ester plasticizer, 25 - 75; lead stabilizer, 1 - 7; calcium stearate, 0.7 - 3; diphenylolpropane, 0.1 - 0.8; zinc oxide, 0.5 - 8; zinc borate, 0.5 - 5; calcium chloride, 0.1 - 2 or calcium oxide, 0.1 - 2; calcium carbonate, 5 - 90; antimony trioxide, 0.5 - 9; and carbon black, 1 - 8.

EFFECT: reduced inflammability and smoke-forming capacity due to introduction of zinc oxide, zinc borate, and calcium chloride or calcium oxide.

3 cl, 1 tbl

FIELD: cable industry.

SUBSTANCE: proposed composition designed for insulating sheaths of cables and wires operating under high fire hazard conditions has following proportion of ingredients, part by mass: suspension polyvinyl chloride, 100; ester plasticizer, 35 - 65; lead stabilizer, 2 - 7; calcium carbonate, 5 - 45; aluminum oxide trihydrate, 20 - 100; antimony trioxide, 5 - 9; zinc oxide, 0.5 - 8; and newly introduced zinc borate, 0.5 - 8; calcium stearate, 1 - 3; calcium chloride, 0.1 - 2 or calcium oxide, 0.1 - 2.

EFFECT: enhanced fire resistance at low degree of smoke emission under fire conditions.

1 cl, 1 tbl

FIELD: electrical communication components; cables whose conductors are covered with polymeric insulation extruded about conductor.

SUBSTANCE: proposed cable has its conductors covered with insulation that has at least one component incorporating maximum 20, and best of all 15, mass percent of polymer characterized in high degree of extrudate swelling. This polymer is defined as that characterized in extrudate swelling degree over 55% and higher, best of all that having extrudate swelling degree over 65%. Best insulation has at least second component of high degree of cracking resistance under stress; therefore, minimal combination of these polymers will provide for insulation layer possessing unique combination of physical properties, including high degree of foaming, fine uniform cellular structure, reduced attenuation, and cracking resistance under stress which is capable of sustaining temperature of 100 °C over 100 h without cracking in spirally coiled state at stress level one-fold higher than outer diameter of insulation.

EFFECT: improved electrical characteristics and mechanical strength of insulation.

23 cl, 6 dwg, 3 tbl

FIELD: insulation materials.

SUBSTANCE: invention relates to polyethylene composition for insulation of conductors and cables, which exhibits improved scorching resistance and consists of (i) polyethylene and scorching inhibitor having melting point under atmospheric pressure below 50°C and being compound depicted by general formula I, wherein R1 represents optionally phenyl-substituted С120-alkyl, С220-alkenyl, С320-alkynyl, С39-cycloalkyl, phenyl, or tolyl; R2 and R3, independently from each other, represent С120-alkyl optionally substituted by following substituents: phenyl, one or two hydroxyls, cyano group, formyl, acetyl, and -O-COR5; R5 represents С120-alkyl, С220-alkenyl, С320-alkynyl, or optionally hydroxyl-substituted С39-cycloalkyl; phenyl, 4-chlorophenyl, 2-methoxycarbonylphenyl, p-tolyl, 1,3-benzothiazol-2-yl, -(CHR6)nCOOR7, or -(CHR6)nCONR8R9, wherein n=1 or 2, R6 represents hydrogen atom or С16-alkyl; R7 С120-alkyl optionally interrupted with 1-5 O or S atoms, С57-cycloalkyl, phenyl, benzyl, or tolyl; R8 and R9 each represents hydrogen atom or С16-alkyl; R4 represents hydrogen atom or methyl; and (ii) organic peroxide. Composition may be extruded with minimum preliminary cross-linking, even at sufficient cross-linking rate. Polyethylene composition for insulation of conductors and cables with improved scorching resistance is described, which composition additionally contains an amine selected from group consisting of diphenylamine, 4-tert-butyldiphenylamine, 4-tert-octyldiphenylamine, 4,4'-di-tert-butyldiphenylamine, 2,4,4'-tris-tert-butyldiphenylamine, 4-tert-butyl-4'-tert-octyldiphenylamine, o,o', m,m'- or p,p'-di-tert-octyldiphenylamine, 2,4-di-tert-butyl-4'-tert-octyldiphenylamine, 4.4'-di-tert-octyldiphenylamine, 2,4-di-tert-octyl-4'-tert-butyldiphenylamine. This composition may be extruded with minimum preliminary cross-linking, even at sufficient cross-linking rate. Method for preparing cross-linked polyethylene composition is also disclosed. (I).

EFFECT: enhanced resistance against preliminary vulcanization at simultaneously preserved satisfactory vulcanization rate and density of cross linkages formed.

3 cl, 5 tbl

FIELD: electrical engineering; polymeric compositions based on reduced-inflammability plasticized polyvinyl chloride.

SUBSTANCE: proposed suspended polyvinyl chloride based polymeric composition designed for insulating internal and external sheaths of wires and cables has following ingredients, mass percent: suspended polyvinyl chloride, 100; ester plasticizer, 45-70; chlorinated wax and/or chlorinated alpha-olefins, 15-20; tribasic lead sulfate, 5-7; calcium stearate, 1-2; aluminum hydroxide or magnesium hydroxide, 45-60; antimony trioxide, 5-10; diphenyl propane, 0.1-0.5; 4.4'-isopropylidenediphenol epoxy resin, 23-4; carbon black, 0.5-2.0.

EFFECT: reduced inflammability, enhanced volume resistivity, thermal stability, and melt fluidity of composition.

2 cl, 1 tbl, 11 ex

FIELD: cable engineering.

SUBSTANCE: proposed smoke-emitting plasticized PVC based polymeric composition used for manufacturing insulation and cable sheaths has following ingredients, mass by part: suspension polyvinyl chloride, 100; ester plasticizer, 40-90; lead stabilizer, 2-8; antimony trioxide, 2-10; zinc oxide, 2-4; boron acid, 2-5; ocher, 10-70; calcium stearate, 1-3; diphenylolpropane, 0.1-0.4.

EFFECT: enhanced heat resistance of composition, its compliance with requirements to smoking under conditions of burning, smoldering, and hydrogen chloride emission in burning.

1 cl, 2 tbl

FIELD: chemistry; insulation.

SUBSTANCE: invention pertains to a cable with a coating layer, made from waste materials. The cable consists of at least, one conductor with at least one transfer element and at least one layer of coating. The coating material contains between 30 mass % and 90 mass % of the overal mass of the coating material, at least, first polyethylene with density not more than 0.940 g/cm3 and melt flow index from 0.05 g/10 min. to 2 g/10 min., measured at 190°C and a load of 2.16 kg in accordance with standard ASTM D1238-00, and quantity from 10 mass % to 70 mass % of the overall mass of the coating material, at least, second polyethylene with density of more than 0.940 g/cm3. The first polyethylene is obtained from waste material. Use of at least, one polyethylene with density of more than 0.940 g/cm3 in the recycled polyethylene allows for obtaining a layer of coating, capable of providing for mechanical characteristics, in particular, breaking stress and tensile strength, comparable to characteristics of primordial polyethylene. The stated coating layer is preferably used as an external protective coating.

EFFECT: obtaining of a new type of cable insulation.

43 cl, 9 dwg, 4 tbl, 10 ex

Up!