Multistage heat exchanger

FIELD: mechanical engineering; heat exchanger equipment.

SUBSTANCE: invention relates to multistage heat exchange device containing primary and secondary circuits to provide heat exchange in which heat carrier passes in opposite directions. According to invention, primary circuit has at least two points of supply of heat carrier displaced relative to each other in direction of flow. Said device contains also system of valves interacting with temperature sensors and regulating heat carrier flow through primary circuit. Valve gear for each heat carrier supply point has separate valve.

EFFECT: provision of stable control of temperature at output of secondary circuit.

5 cl, 3 dwg

 



 

Same patents:

The invention relates to refrigeration, and in particular to methods of manufacturing devices with improved technology in the Assembly

FIELD: mechanical engineering; heat exchanger equipment.

SUBSTANCE: invention relates to multistage heat exchange device containing primary and secondary circuits to provide heat exchange in which heat carrier passes in opposite directions. According to invention, primary circuit has at least two points of supply of heat carrier displaced relative to each other in direction of flow. Said device contains also system of valves interacting with temperature sensors and regulating heat carrier flow through primary circuit. Valve gear for each heat carrier supply point has separate valve.

EFFECT: provision of stable control of temperature at output of secondary circuit.

5 cl, 3 dwg

Heat-exchanger // 2345303

FIELD: heating.

SUBSTANCE: invention relates to heat exchange units and may be used in heat-exchangers with primary and secondary circuits containing valve for coolant flow control. For this purpose, the heat exchanger consisting of housing with primary circuit between inlet connection and return pipe connection, and the secondary circuit between feed line connection and drain connection, includes valve for coolant flow control through the primary circuit and actuator with the expanding element being affected by the secondary circuit temperature. The valve and expanding element are located from the opposite sides of heat transfer surface, wherethrough the heat from the primary side is transferred to the secondary side. So, the heat-exchanger is represented with plate heat-exchanger. If temperature in the secondary circuit is changed, the expanding element is extended or compressed. The expanding element is connected with the valve which controls coolant flow rate in the primary circuit.

EFFECT: development of compact heat exchanger.

9 cl, 2 dwg

FIELD: heating.

SUBSTANCE: invention relates to the field of heat engineering, namely, to devices for heat recovery. Device for heat recovery contains a heat exchanger (3) located in the annular space (4) representing a part of the exhaust pipe (2) branching, for example, from a gas turbine or a diesel engine. Bypass pipe (6) for exhaust passes through the annular space (4), and distribution of the exhaust flow through the heat exchanger (3) and the bypass pipe (6) is regulated by the control valve (7). The control valve (7) is a butterfly valve (7) which is located in the exhaust pipe (2), adjacent to the heat exchanger (3), at that the said butterfly valve (7) has a fixed part (8) and the rotary part (9) equipped with openings (10, 12, 11, 13) closed or combined with each other. And both the fixed part (8) and the rotary part (9) have two oppositely directed conical parts (8a, 8b; 9a, 9b).

EFFECT: creation of a simple and inexpensive in manufacture device for heat recovery, weight reduction and simplification of regulation.

9 cl, 5 dwg

FIELD: power engineering.

SUBSTANCE: invention relates to a valve unit (1), comprising an inlet hole, a distributor and an outlet part having at least two outlet holes. The distributor comprises an inlet part (5), communicating with the specified inlet hole, and is made as capable of distributing fluid medium received from this inle thole, between at least two parallel flows of a heat exchanger (3). The valve unit (1) also comprises the first valve unit and the second valve unit installed as capable of displacement relative to each other so that mutual position of these valve elements determines the fluid medium flow passing from the inlet hole to each outlet hole of the outlet part. Besides, the valve unit (1) comprises a collector (2) forming an integral part of the valve unit (1). This collector (2) is made as capable of forming a zone of coupling with a heat exchanger (3), having at least two channels, at the same time this collector provides for such liquid communication, at which every outlet hole (7, 9) communicates with the channel of the heat exchanger (3), connected to the collector (2). The collector comprises at least one separating element that separates at least two sections of the collector, besides, each of these sections communicates with the distributor and the specified zone of coupling with the heat exchanger.

EFFECT: using the invention will make it possible to improve distribution of a coolant between heat exchanger channels.

13 cl, 11 dwg

FIELD: heating.

SUBSTANCE: recuperator includes a heated gas channel; an inlet pipeline; an outlet pipeline; as well as a once-through heating surface located in the heated gas channel and formed with a variety of the first single-row tube-header assemblies and a variety of the second single-row tube-header assemblies. Each of the variety of the first single-row tube-header assemblies including a variety of the first generator heat exchange tubes is parallel connected for passage of through fluid medium flow; as well as it includes an inlet header connected to the inlet pipeline. Each of the variety of the second single-row tube-header assemblies including the variety of the second heat exchange tubes is parallel connected for passage of through fluid medium flow entering from the corresponding first heat exchange tubes; as well as it includes an outlet header connected to the outlet pipeline. Each of the inlet headers is connected to the inlet pipeline via at least one corresponding tube of the variety of the first connecting tubes, and each of the outlet headers is connected to the outlet pipeline at least via one corresponding tube of the variety of the second connecting tubes.

EFFECT: quick heating and cooling and increase in the service life.

22 cl, 7 dwg

Valve assembly // 2495474

FIELD: heating.

SUBSTANCE: valve assembly includes a valve that controls heat carrier flow rate in a heat exchange unit, which has primary circuit and secondary circuit, and a valve control device having a thermostatic element that is subject to influence of temperature in secondary circuit and that can be subject to a temperature and/or pressure variation device. A physical value obtained from valve (2) or heat exchange unit (22) has effect on the above device (14. 30) of temperature and/or pressure variation. Heat exchange unit is made in the form of water heater (22) having primary supply pipeline (25) and primary discharge pipeline (26) in primary circuit (23), as well as secondary supply pipeline (27) and secondary discharge pipeline (28) in secondary circuit (24). At that, water having increased temperature can be taken through secondary discharge pipeline (28). Temperature of primary supply pipeline (25) acts on device (14, 30) of temperature and/or pressure variation.

EFFECT: providing quick control of a valve at the appropriate control characteristic.

11 cl, 7 dwg

FIELD: power industry.

SUBSTANCE: heat exchanger reactor includes a shell (1) in the form of a flattened cone with bottoms (2) and (3), heat carrier input and output pipes (4) and (5) for the tube space, and heat carrier input and output pipes (6) and (7) for the shell space. One bottom, namely bottom (2), features a concavity (8) (if seen from below the bottom) in the centre. The shell (1) features a heat effect compensator (9). A thin-wall hollow cone (10) for flow distribution through small (11) and large (12) orifices is mounted in one bottom, namely bottom (3).

EFFECT: enhanced efficiency of heat exchanger due to even distribution of flow speed through the whole volume, and reduced dimensions.

6 cl, 3 dwg

FIELD: engines and pumps.

SUBSTANCE: method of the engine (10) operation is that the cooling of the intake air in the charge air cooler (80) is carried out and control the vibratory device (92) operation of the charge air cooler, depending to the condensate formation conditions in the charge air cooler (80). Adjust the valve position, located at the intake of the charge air cooler (80), based on the condensate formation conditions and the state of the vibratory device (92). Engine operation method version and engine system are disclosed.

EFFECT: reduction of condensate accumulation on the charge air cooler surface and prevention of the condensate entry into the air intake flow.

19 cl, 5 dwg

FIELD: machine engineering.

SUBSTANCE: invention relates to the heat exchanger (1), containing a set of inlets (30-36), each one of which is connected to at least one coherent pipe (20) of the heat exchanger (1), so that at least one flow (S) of the first medium, as well as one flow (S') of the second medium can be guided through at least one coherent inlet (30, 32, 33, 35, 36) to a respective coherent at least one pipe (20), while the heat exchanger (1) has a case (10), which surrounds the space (11) of the case in which the specified pipes (20) are located, so that, in particular, the flow (S'") of the medium passing through the space (11) of the case enters into indirect heat exchange with the medium flow (S, S') passing in the corresponding pipe (20), and the specified pipes (20) are wound around the central pipe (12) of the heat exchanger (1). According to the invention it is provided that each of the pipes (20) agreed with the appropriate inlet (30-36) sets the heating surface and the heat exchanger (1) has at least one switching means (100), which is intended to switch back and forth at least one of the inlets (30) between at least one first operating condition and one second operating condition, so that the flow (S) of the first medium can be directed in the first operating condition and the flow (S') of the second medium -in the second operating condition through at least one inlet (30) to at least one agreed pipe (20), with providing the large heating surface for the flow (S) of the first medium in the first operating condition and respectively, the smaller heating surface for the flow of the second medium and with providing the large heating surface for the flow (S') of the second medium in the second operating condition, and respectively, the smaller heating surface for the flow (S) of the first medium.

EFFECT: increase the efficiency.

11 cl, 2 dwg

Up!