Plasma reaction gas, method for its production, method for manufacturing electrical or electronic part, method for producing thin fluorocarbon film, and incineration process

FIELD: plasma reaction gas, its production and application.

SUBSTANCE: proposed plasma reaction gas has in its composition chain-structure perfluoroalkyne incorporating 5 or 6 atoms of carbon, preferably perfluorine-2-pentyne. This plasma reaction gas can be found useful for dry etching to produce precision structure, for plasma chemical precipitation from vapor phase, for producing thin film, and for plasma chemical incineration. Plasma reaction gas is synthesized by way of bringing dihydrofluoroalkyne or monohydroalkyne in contact with basic compound.

EFFECT: enhanced economic efficiency of highly selective gas production for plasma reaction on industrial scale.

18 cl

 

The text descriptions are given in facsimile form.

1. The gas for plasma reaction, containing the compound represented by the following formula (1):

where R1represents fluorine, performanceline group having 1-3 carbon atoms or performancenow group having 2-3 carbon atoms, R2represents performanceline group having 1-4 carbon atoms, performancenow group having 2-4 carbon atoms, or performancenow group having 2-4 carbon atoms, provided that the total number of carbon atoms in the amount of R1and R2is 3 or 4, and R1and R2may be the same or different.

2. The gas for plasma reaction according to claim 1, where R1and R2in the formula (1) are independently selected from perforaciones group having 1-3 carbon atom.

3. The gas for plasma reaction according to claim 1, where the compound represented by formula (1), represents the t of a PERFLUORO-2-pentyn.

4. The gas for plasma reaction according to any one of claims 1 to 3, where the content of the compound represented by formula (1)is at least 90 vol.% relative to the total amount of gas for plasma reaction.

5. The gas for plasma reaction according to any one of claims 1 to 3, where the content of the compound represented by formula (1)is at least 99,9% vol. relative to the total amount of gas for plasma reaction.

6. The gas for plasma reaction according to claim 5, where the total content of gaseous nitrogen and gaseous oxygen contained as other microingredients in the gas for plasma reaction, does not exceed 200 mln volume relative to the total amount of gas for plasma reaction.

7. The gas for plasma reaction according to claim 5, where the amount of moisture contained in the gas for plasma reaction, does not exceed 30 mlnd mass relative to the total amount of gas for plasma reaction.

8. The gas for plasma reaction according to any one of claims 1 to 3, which contains at least 70 wt.% compounds represented by formula (1), and not more than 30 wt.%, at least one kind of compounds selected from perfluoroolefins having 2-6 carbon atoms, performancenow having 1-6 carbon atoms, and perftorsilanami having 3-6 carbon atoms.

9. The gas for plasma reaction according to any one of claims 1 to 3, which contains the unity, represented by formula (1), and not more than 50 mol.% with respect to the compound represented by formula (1)at least one type of fluorocarbons having 1-6 carbon atoms.

10. A method of obtaining a gas for plasma reaction, containing the compound represented by the following formula (1):

where R1represents fluorine, performanceline group having 1-3 carbon atoms, or performancenow group having 2-3 carbon atoms, R2represents performanceline group having 1-4 carbon atoms, performancenow group having 2-4 carbon atoms, or performancenow group having 2-4 carbon atoms, provided that the total number of carbon atoms in the amount of R1and R2is 3 or 4, and R1and R2may be the same or different, wherein at least one compound selected from compounds represented by the following next formula (2), and compounds represented by the following next formula (3):

where R1and R2are the same as defined in formula (1), and one of X and Y in the formula (3) represents hydrogen and the other represents a fluorine interacts with the base.

11. Pic is b of claim 10, where at least one compound selected from compounds represented by formula (2), and compounds represented by formula (3), interacts with the main connection, and thus obtained reaction liquid is subjected to separation of solid - liquid, and the original product for the reaction, constituting selected so fluid, distil with getting gas for plasma reaction, containing the compound represented by formula (1), with a purity of at least 98 vol.%.

12. The method according to claim 10 or 11, where in the product gas for plasma reaction R1and R2in the formula (1) independently selected from performanceline groups having 1-3 carbon atom.

13. The method according to claim 11, where receiving a gas for plasma reaction containing PERFLUORO-2-penten chain structure, in the form of compounds represented by formula (1), with a purity of at least 98 vol.%.

14. The method according to claim 11, where the original product for the reaction containing the compound represented by formula (1), is subjected to fractional distillation in an atmosphere of inert gas of group 18 of the periodic table with getting gas for plasma reaction according to any one of pp.5-7.

15. The method according to claim 10, where at least one compound selected from compounds represented by formula (2), and compounds represented by formula (3), interacts with the main connection is the group of thus obtained reaction liquid is subjected to separation of solid - liquid, and the original product for the reaction, constituting allocated thus the liquid is subjected to fractional distillation to obtain gas for plasma reaction with a purity of at least about 99.9 vol.%, and trace amounts of remaining impurities are removed from the thus obtained gas with getting gas for plasma reaction according to any one of pp.5-7.

16. A method of manufacturing electrical or electronic components, characterized in that it includes a stage of impact on the surface of the metal dry etching using as an etching gas, a gas for plasma reaction according to any one of claims 1 to 9.

17. A method of obtaining a thin fluorocarbon film, characterized in that it comprises the formation of a thin fluorocarbon films by chemical vapour deposition using a gas for plasma reaction according to any one of claims 1 to 9.

18. Method of ashing, wherein the ashing is performed with the use of a gaseous composition containing gas for plasma reaction according to any one of claims 1 to 9.

Priority items:

08.11.2001 on PP-13;

22.03.2002 according to claims 1-9, 14-18.



 

Same patents:

FIELD: production of dirt-free laser mirrors.

SUBSTANCE: proposed method for producing dirt-free surfaces of materials chosen from group incorporating GaAs, GaAlAs, InGaAs, InGaAsP, and InGaAs on mirror facets of chip for GaAS based laser resonators includes shearing of laser mirror facet in ambient atmosphere incorporating normal air, dry air, or dry nitric media. Oxides and other pollutants produced in the course of ambient atmosphere impact on mirror facets are removed by dry etching in vacuum. Then natural nitride layer is grown on mirror facets using nitrogen treatment. Such facet treatment ensures minimized light absorption and surface recombination.

EFFECT: facilitated procedure, enhanced economic efficiency and yield due to high reproducibility.

37 cl, 5 dwg

FIELD: microelectronics, micro- and nano-technology.

SUBSTANCE: proposed method for producing submicron and nanometric structure includes formation of embossed structures on substrate surface, application of film to reduce embossed structure size to submicron and nanometric dimensions, and etching, anisotropic and selective relative to film material and source embossed layer, in chemically active plasma of structure obtained together with substrate material until embossed structure of submicron and nanometric dimensions, twice as deep as its width, is obtained.

EFFECT: provision for transferring mask pattern to bottom layer of substrate measured in terms of submicron and nanometric values.

2 cl, 3 dwg

FIELD: engineering of semiconductor devices.

SUBSTANCE: invention concerns method and device for etching dielectric, removing etching mask and cleaning etching chamber. In etching chamber 40 semiconductor plate 56 is positioned. Dielectric 58 made on semiconductor plate is subjected to etching, using local plasma, produced by special device for producing local plasma during etching process. Mask for etching 60 is removed by means of plasma from autonomous source 54, generated in device for producing plasma from autonomous source connected to etching chamber. Etching chamber after removal of semiconductor plate is subjected to cleaning, using either local plasma, or plasma from autonomous source. To achieve higher level of cleaning, it is possible to utilize a heater, providing heating for chamber wall.

EFFECT: increased efficiency.

2 cl, 4 dwg

FIELD: process equipment for manufacturing semiconductor devices.

SUBSTANCE: plasma treatment chamber 200 affording improvement in procedures of pressure control above semiconductor wafer 206 is, essentially, vacuum chamber 212, 214, 216 communicating with plasma exciting and holding device. Part of this device is etching-gas source 250 and outlet channel 260. Boundaries of area above semiconductor wafer are controlled by limiting ring. Pressure above semiconductor wafer depends on pressure drop within limiting ring. The latter is part of above-the-wafer pressure controller that provides for controlling more than 100% of pressure control area above semiconductor wafer. Such pressure controller can be made in the form of three adjustable limiting rings 230, 232, 234 and limiting unit 236 on holder 240 that can be used to control pressure above semiconductor wafer.

EFFECT: enhanced reliability of pressure control procedure.

15 cl, 13 dwg

FIELD: plasma-chemical treatment of wafers and integrated circuit manufacture.

SUBSTANCE: proposed device that can be used in photolithography for photoresist removal and radical etching of various semiconductor layers in integrated circuit manufacturing processes has activation chamber made in the form of insulating pipe with working gas admission branch; inductor made in the form of inductance coil wound on part of pipe outer surface length and connected to high-frequency generator; reaction chamber with gas evacuating pipe, shielding screens disposed at pipe base, and temperature-stabilized substrate holder mounted in chamber base. In addition device is provided with grounded shield made in the form of conducting nonmagnetic cylinder that has at least one notch along its generating line and is installed between inductor and pipe; shielding screens of device are made in the form of set of thin metal plates arranged in parallel at desired angle to substrate holder within cylindrical holder whose inner diameter is greater than maximal diameter of wafers being treated. Tilting angle, quantity, and parameters of wafers are chosen considering the transparency of gas flow screen and ability of each wafer to overlap another one maximum half its area. In addition substrate holder is spaced maximum four and minimum 0.6 of pipe inner diameter from last turn of inductance coil; coil turn number is chosen to ensure excitation of intensive discharge in vicinity of inductor depending on generator output voltage and on inner diameter of pipe using the following equation:

where n is inductance coil turn number; U is generator output voltage, V; Dp is inner diameter of pipe, mm.

EFFECT: enhanced speed and quality of wafer treatment; reduced cost due to reduced gas and power requirement for wafer treatment.

1 cl, 6 dwg, 1 tbl

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for purifying octafluoropropane. Method is carried out by interaction of crude octafluoropropane comprising impurities with the impurity-decomposing agent at increased temperature and then with adsorbent that are able to remove indicated impurities up to the content less 0.0001 wt.-% from indicated crude octafluoropropane. The impurity-decomposing agent comprises ferric (III) oxide and compound of alkaline-earth metal in the amount from 5 to 40 wt.-% of ferric oxide and from 60 to 95 wt.-% of compound of alkaline-earth metal as measured for the complete mass of the impurity-decomposing agent. Ferric (III) oxide represents γ-form of iron hydroxyoxide and/or γ-form of ferric (III) oxide. Impurities represent at least one compound taken among the group consisting of chloropentafluoroethane, hexafluoropropene, chlorotrifluoromethane, dichlorodifluoromethane and chlorodifluoromethane. Adsorbent represents at least one substance taken among the group consisting of activated coal, molecular sieves and carbon molecular sieves. Crude octafluoropropane comprises indicated impurities in the amount from 10 to 10 000 mole fr. by mass. Invention proposes gas, etching gas and purifying gas comprising octafluoropropane with purity degree 99.9999 wt.-% and above and containing chlorine compound in the concentration less 0.0001 wt.-%. Invention provides enhancing purity of octafluoropropane.

EFFECT: improved purifying method.

13 cl, 11 tbl, 12 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for purifying octafluorocyclobutane. Method is carried out by interaction of crude octafluorocyclobutane containing impurities with the impurity-decomposing agent at increased temperature and then with adsorbent that is able to eliminate indicated impurities up to the content less 0.0001 wt.-% from the mentioned crude octafluorocyclobutane. Impurity-decomposing agent comprises ferric (III) oxide and compound of alkaline-earth metal in the amount from 5 to 40 wt.-% of ferric oxide and from 60 to 95 wt.-% of compound of alkaline-earth metal as measured for the complete mass of the impurity-decomposing agent. Ferric (III) oxide represents γ-form of iron hydroxyoxide and/or γ-form of ferric (III) oxide. Impurity represents at least one fluorocarbon taken among the group consisting of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane, 1-chloro-1,1,2,2,3,3,3-heptafluoropropane, 1-chloro-1,1,2,2,3,3,3-heptafluoropropane, 1-chloro-1,2,2,2-tetrafluoroethane, 1-chloro-1,1,2,2-tetrafluoroethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, hexafluoropropene and 1H-heptafluoropropane. Adsorbent represents at least one of representatives taken among the group including activated carbon, carbon molecular sieves and activated coal. Crude octafluorocyclobutane interacts with the mentioned impurity-decomposing agent at temperature from 250oC to 380oC. Invention proposes gas, etching gas and purifying gas including octafluorocyclobutane with purity degree 99.9999 wt.-% and above and comprising fluorocarbon impurity in the concentration less 0.0001 wt.-%. Invention provides enhancing purity of octafluorocyclobutane.

EFFECT: improved purifying method.

26 cl, 13 tbl, 10 ex

The invention relates to microelectronics, and more particularly to a technique of manufacturing solid-state devices and integrated circuits using microwave plasma stimulation under conditions of electron cyclotron resonance (ECR), as well as to technology plasma treatment in the process of manufacturing various semiconductor structures
The invention relates to the field of microelectronics, in particular to the technology of IP to the processes of plasma etching

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for purifying octafluorocyclobutane. Method is carried out by interaction of crude octafluorocyclobutane containing impurities with the impurity-decomposing agent at increased temperature and then with adsorbent that is able to eliminate indicated impurities up to the content less 0.0001 wt.-% from the mentioned crude octafluorocyclobutane. Impurity-decomposing agent comprises ferric (III) oxide and compound of alkaline-earth metal in the amount from 5 to 40 wt.-% of ferric oxide and from 60 to 95 wt.-% of compound of alkaline-earth metal as measured for the complete mass of the impurity-decomposing agent. Ferric (III) oxide represents γ-form of iron hydroxyoxide and/or γ-form of ferric (III) oxide. Impurity represents at least one fluorocarbon taken among the group consisting of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane, 1-chloro-1,1,2,2,3,3,3-heptafluoropropane, 1-chloro-1,1,2,2,3,3,3-heptafluoropropane, 1-chloro-1,2,2,2-tetrafluoroethane, 1-chloro-1,1,2,2-tetrafluoroethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, hexafluoropropene and 1H-heptafluoropropane. Adsorbent represents at least one of representatives taken among the group including activated carbon, carbon molecular sieves and activated coal. Crude octafluorocyclobutane interacts with the mentioned impurity-decomposing agent at temperature from 250oC to 380oC. Invention proposes gas, etching gas and purifying gas including octafluorocyclobutane with purity degree 99.9999 wt.-% and above and comprising fluorocarbon impurity in the concentration less 0.0001 wt.-%. Invention provides enhancing purity of octafluorocyclobutane.

EFFECT: improved purifying method.

26 cl, 13 tbl, 10 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for purifying octafluoropropane. Method is carried out by interaction of crude octafluoropropane comprising impurities with the impurity-decomposing agent at increased temperature and then with adsorbent that are able to remove indicated impurities up to the content less 0.0001 wt.-% from indicated crude octafluoropropane. The impurity-decomposing agent comprises ferric (III) oxide and compound of alkaline-earth metal in the amount from 5 to 40 wt.-% of ferric oxide and from 60 to 95 wt.-% of compound of alkaline-earth metal as measured for the complete mass of the impurity-decomposing agent. Ferric (III) oxide represents γ-form of iron hydroxyoxide and/or γ-form of ferric (III) oxide. Impurities represent at least one compound taken among the group consisting of chloropentafluoroethane, hexafluoropropene, chlorotrifluoromethane, dichlorodifluoromethane and chlorodifluoromethane. Adsorbent represents at least one substance taken among the group consisting of activated coal, molecular sieves and carbon molecular sieves. Crude octafluoropropane comprises indicated impurities in the amount from 10 to 10 000 mole fr. by mass. Invention proposes gas, etching gas and purifying gas comprising octafluoropropane with purity degree 99.9999 wt.-% and above and containing chlorine compound in the concentration less 0.0001 wt.-%. Invention provides enhancing purity of octafluoropropane.

EFFECT: improved purifying method.

13 cl, 11 tbl, 12 ex

FIELD: plasma-chemical treatment of wafers and integrated circuit manufacture.

SUBSTANCE: proposed device that can be used in photolithography for photoresist removal and radical etching of various semiconductor layers in integrated circuit manufacturing processes has activation chamber made in the form of insulating pipe with working gas admission branch; inductor made in the form of inductance coil wound on part of pipe outer surface length and connected to high-frequency generator; reaction chamber with gas evacuating pipe, shielding screens disposed at pipe base, and temperature-stabilized substrate holder mounted in chamber base. In addition device is provided with grounded shield made in the form of conducting nonmagnetic cylinder that has at least one notch along its generating line and is installed between inductor and pipe; shielding screens of device are made in the form of set of thin metal plates arranged in parallel at desired angle to substrate holder within cylindrical holder whose inner diameter is greater than maximal diameter of wafers being treated. Tilting angle, quantity, and parameters of wafers are chosen considering the transparency of gas flow screen and ability of each wafer to overlap another one maximum half its area. In addition substrate holder is spaced maximum four and minimum 0.6 of pipe inner diameter from last turn of inductance coil; coil turn number is chosen to ensure excitation of intensive discharge in vicinity of inductor depending on generator output voltage and on inner diameter of pipe using the following equation:

where n is inductance coil turn number; U is generator output voltage, V; Dp is inner diameter of pipe, mm.

EFFECT: enhanced speed and quality of wafer treatment; reduced cost due to reduced gas and power requirement for wafer treatment.

1 cl, 6 dwg, 1 tbl

FIELD: process equipment for manufacturing semiconductor devices.

SUBSTANCE: plasma treatment chamber 200 affording improvement in procedures of pressure control above semiconductor wafer 206 is, essentially, vacuum chamber 212, 214, 216 communicating with plasma exciting and holding device. Part of this device is etching-gas source 250 and outlet channel 260. Boundaries of area above semiconductor wafer are controlled by limiting ring. Pressure above semiconductor wafer depends on pressure drop within limiting ring. The latter is part of above-the-wafer pressure controller that provides for controlling more than 100% of pressure control area above semiconductor wafer. Such pressure controller can be made in the form of three adjustable limiting rings 230, 232, 234 and limiting unit 236 on holder 240 that can be used to control pressure above semiconductor wafer.

EFFECT: enhanced reliability of pressure control procedure.

15 cl, 13 dwg

FIELD: engineering of semiconductor devices.

SUBSTANCE: invention concerns method and device for etching dielectric, removing etching mask and cleaning etching chamber. In etching chamber 40 semiconductor plate 56 is positioned. Dielectric 58 made on semiconductor plate is subjected to etching, using local plasma, produced by special device for producing local plasma during etching process. Mask for etching 60 is removed by means of plasma from autonomous source 54, generated in device for producing plasma from autonomous source connected to etching chamber. Etching chamber after removal of semiconductor plate is subjected to cleaning, using either local plasma, or plasma from autonomous source. To achieve higher level of cleaning, it is possible to utilize a heater, providing heating for chamber wall.

EFFECT: increased efficiency.

2 cl, 4 dwg

FIELD: microelectronics, micro- and nano-technology.

SUBSTANCE: proposed method for producing submicron and nanometric structure includes formation of embossed structures on substrate surface, application of film to reduce embossed structure size to submicron and nanometric dimensions, and etching, anisotropic and selective relative to film material and source embossed layer, in chemically active plasma of structure obtained together with substrate material until embossed structure of submicron and nanometric dimensions, twice as deep as its width, is obtained.

EFFECT: provision for transferring mask pattern to bottom layer of substrate measured in terms of submicron and nanometric values.

2 cl, 3 dwg

FIELD: production of dirt-free laser mirrors.

SUBSTANCE: proposed method for producing dirt-free surfaces of materials chosen from group incorporating GaAs, GaAlAs, InGaAs, InGaAsP, and InGaAs on mirror facets of chip for GaAS based laser resonators includes shearing of laser mirror facet in ambient atmosphere incorporating normal air, dry air, or dry nitric media. Oxides and other pollutants produced in the course of ambient atmosphere impact on mirror facets are removed by dry etching in vacuum. Then natural nitride layer is grown on mirror facets using nitrogen treatment. Such facet treatment ensures minimized light absorption and surface recombination.

EFFECT: facilitated procedure, enhanced economic efficiency and yield due to high reproducibility.

37 cl, 5 dwg

FIELD: plasma reaction gas, its production and application.

SUBSTANCE: proposed plasma reaction gas has in its composition chain-structure perfluoroalkyne incorporating 5 or 6 atoms of carbon, preferably perfluorine-2-pentyne. This plasma reaction gas can be found useful for dry etching to produce precision structure, for plasma chemical precipitation from vapor phase, for producing thin film, and for plasma chemical incineration. Plasma reaction gas is synthesized by way of bringing dihydrofluoroalkyne or monohydroalkyne in contact with basic compound.

EFFECT: enhanced economic efficiency of highly selective gas production for plasma reaction on industrial scale.

18 cl

FIELD: electronics; semiconductor devices and methods for etching structures on their wafers.

SUBSTANCE: plasmochemical etching of material is conducted by way of acting on its surface with ion flow of plasma produced from plasma forming gas filling evacuated camber, electron beam being used to act upon plasma forming gas for plasma generation. Constant longitudinal magnetic field with flux density of 20-40 Gs is built on axis, plasma-generating gas pressure is maintained within chamber between 0.01 and 0.1 Pa, and electron beam at current density of 0.1-1 A/cm2 ensuring ignition of beam-plasma discharge is used. Etching condition (energy and ion current density) can be controlled ether by modulating electron beam with respect to speed or by varying potential of discharge collector.

EFFECT: enhanced etching efficiency (speed) and quality of etching structures on semiconductor material surface: high degree of etching anisotropy preventing etching under mask, minimized material structure radiation defects brought in during etching.

2 cl, 1 dwg

FIELD: physics; electricity.

SUBSTANCE: etching system contains plasma-generating facilities for plasma generating in vacuum chamber, high-frequency displacement voltage source, supplying high-frequency displacement voltage to electrode-substrate, floating electrode opposite to electrode-substrate in vacuum chamber and supported in floating condition by electric potential, solid material placed on the side of the floating electrode directed to electrode-substrate to form film layer protecting from etching, and control unit for periodic supply of high-frequency voltage to floating electrode. Etching method includes repetition, in specified sequence, of substrate etching stage by means of etching gas supplied to vacuum chamber, and film layer formation stage protecting substrate from etching by sputtering of solid material opposite to substrate.

EFFECT: high etching selectivity when using mask as well as production of anisotropic profile and great etching depth.

22 cl, 7 dwg

Up!