Method for opened bedded deposit development

FIELD: mining, particularly opened development of horizontal and gently sloping mineral deposits.

SUBSTANCE: method involves cutting next to last overburden bench; providing explosion to shift rock to goaf during above cutting operation; forming road over shifted rock; performing transportation of rock cut from next to last bench; transporting rock remaining after explosion out of ore body outline along with rock bench slope cleaning and ore body roof cleaning; removing remaining cone with bulldozer; digging-out pit along contact line between ore and shifted rock; mining mineral and transporting thereof along temporary ore-transportation road formed over shifted rock pile.

EFFECT: increased efficiency of deposit development, increased discharge coefficient, decreased distance of next to last bench and mineral rock transportation.

7 cl, 2 dwg

 

The invention relates to the mining industry, and is intended for open pit mining of bedded deposits, in particular for developing horizontal and slightly inclined mineral deposits, while covering overburden are powerful breeds of any fortress.

The known method of opencast development of horizontal and sloping layers of minerals, including the refinement of the lower Stripping ledge with the handling of the rocks in the goaf, the refinement of the upper overburden benches and hauling rocks on the external dump. This creates additional capacity for laying breeds transport overburden by escalatio part of the collapse of the blasted rock with loading it in the goaf (EN application for invention No. 95118279, IPC IS 41/26, published 1997.11.20). Handling of overburden in a goaf produced by excavators of the type dragline.

The disadvantage of this technical solution is that this method can only be applied when developing soft or very good blown up half-rock overburden. During the mining of hard rock and rocks of medium strength and this method cannot be applied due to the design features of the excavator (dragline may not work in the rocks).

The closest technical re is the group on the totality of symptoms and the achieved result is a method of open pit mining of minerals (RU patent No. 2235205, application No. 2002120566 published 2004.08.27), including overburden removal using explosion on reset, cleaning the remaining species in the mined-out area and the excavation of minerals. And transshipment remaining after the explosion of any of the castle rock is done with the help of career excavator, and the resulting cone is removed with a bulldozer, and ore extraction is conducted with simultaneous excavation of the ditch, the breed of which is transported to the dump.

The disadvantage of this technical solution is the transportation distance of the breed. Breed penultimate ledge, take out the pit or in a goaf at a very great distance.

The task, which directed the claimed technical solution is to increase the efficiency of field development by reducing the distance of transportation of rocks and minerals.

The technical result from implementation of the proposed technical solution is to reduce the transportation distance of the rocks penultimate rock ledge at the expense laid on blasted rock road, shortening the distance of transportation of minerals and bestransportnye laying breeds last overburden bench stope.

The problem is solved by the fact that when mining after the Stripping him of the ledge produce an explosion at the discharge into the goaf. After the explosion blasted rock roads for transportation breed penultimate rock ledge. Simultaneously career excavator passes left after the explosion rocks the outline of the ore body with the simultaneous Stripping of the slope of the rock ledge and the sweep of the roof of the ore body. The resulting cone is removed by bulldozer. Next, to reduce losses and dilution of the mineral from the path between the ore and shipped breed excavator pass the ditch to a depth of digging excavator or the capacity of the ore body. The extraction of minerals lead mining harvester without blasting or excavating. When using blasting in mining are drilling blastholes at full capacity of the ore body and produce an explosion on loosening and production lead any career excavator. Transportation of minerals produce temporary rogovskoy the road on the blade handled the rocks.

Temporary Congress laid on the collapse of the reset of the breed last of Stripping ledge, and temporary rodowiska road, built on piles, significantly reduce the distance that make hauling rocks and ores. Thus, decreases in the number of units of mining vehicles, reduce fuel consumption frees up human resources - all of this is avishay development efficiency fossil.

The essence of the proposed technical solution is illustrated by drawings.

Figure 1 shows the layout of the site. Figure 2 shows the sections of the site.

In the drawings, the following notation: 1 - goaf, 2 - drilling block penultimate overburden bench, 3 - exploded block penultimate overburden bench, 4 - slaughter penultimate Stripping ledge, 5 - drilling block last overburden bench, 6 - exploded on reset block last overburden bench, 7 - temporary Congress laid on the collapse of the reset of the breed last of Stripping ledge, 8 - lower overburden excavator, covering the remaining from the explosion on reset breed, 9 - bulk shipped rocks in the form of a cone, 10 - bulldozer cleaning piled rock, 11 - ore the unit, working on the mining machine (excavator), 12 - mining combine (excavator), 13 - temporary rodowiska road, built on piles, 14 - ditch, covered by the contact of the ore and the smitten rock, 15 - internal dump overburden the last of the rock ledge, 16 - internal dump overburden penultimate rock ledge, 17 - breed penultimate Stripping ledge 18 - breed last of Stripping ledge, 19 ore body.

The method is as follows.

The development is carried out with a wing that has the lowest power scresn the x rocks. After conducting mining capital of the sinking of the cutting trench, removal of minerals and create space for placement of overburden in - stope 1, produce blasthole drilling in the drilling unit 5 for Stripping the breed last of the rock ledge to Bang on the discharge unit 6. After the explosion on reset pave the way for a temporary exit 7 on blasted rock (for release at the end of the blown-up unit) 6 for removal of breed penultimate Stripping ledge in the developed space - inner blade 15, produce cleaning up the last slope Stripping ledge career excavator 8 from navica and visors with the handling of the breed for the outline of the ore body and conduct a sweep of the roof fossil.

Then the bulldozer 10 make cleaning the formed cone 9 in the mined-out area 1, in the internal dump produce a full sweep of the roof of the ore body. To reduce losses and dilution of the mineral produce the Stripping slope ore ledge by sinking ditch 14 on the power of the ore body. Breed from the ditch shoveled in a goaf. The width of the ditch at the top is directly dependent on the thickness of the ore body. The width of the ditch at the bottom equal to the width of the bucket. When working on the development system are not required shall Timoti in the creation of bottom-hole zone and therefore the coefficient of discharge reaches of 0.45. The blade handled the rocks lay a temporary rudovsky road 13. Further work is carried out on the extraction of mineral mining machine or excavator. When using blasting in mining are drilling blastholes at full capacity of the ore body and produce an explosion on loosening and production lead any career excavator. The hauling produce temporary rogovskoy the road. At the same time produce partial reclamation of mined-out space.

1. The method of open pit mining of mineral deposits, including the testing of the last Stripping ledge with the help of Bang for discharge into the mined-out area, handling rocks left after the explosion last Stripping ledge, in a goaf, cleaning the formed cone, the excavation of the ditch on the contact rocks of the ore body, the recess mineral, characterized in that the hauling rocks penultimate ledge produce temporary road, laid on the release and transportation of minerals produced by the provisional Congress and temporary rogovskoy the road on piled rock.

2. The method of open pit mining of mineral deposits according to claim 1, characterized in that the handling of the rocks with the simultaneous Stripping of the last slope Stripping ledge leading Kari is rnym excavator.

3. The method of open pit mining of mineral deposits according to claim 1, characterized in that the cleaning cone with simultaneous Stripping of the roof of the ore body is produced by a bulldozer.

4. The method of open pit mining of mineral deposits according to claim 1, characterized in that the driving of the ditch leads to the digging depth of the excavator or the capacity of the ore body.

5. The method of open pit mining of mineral deposits according to claim 1, characterized in that the recess mineral lead mining combine or quarry excavator.

6. The method of open pit mining of mineral deposits according to claim 1, characterized in that the recess of minerals produced after the explosion on loosening.

7. The method of open pit mining of mineral deposits according to claim 6, characterized in that explosion on loosening explosive wells are drilled at full capacity of the ore body.



 

Same patents:

FIELD: mining industry, possible use during open combined excavation of bed deposits with two coal formations with alternating extraction of formations and parting and technology of stripping operations based on transporting and non-transporting excavation system.

SUBSTANCE: in accordance to invention, at predetermined sections usable for processing parting in accordance to transport-less dragline technology, special dumping vessels are created and moved for required value towards excavated space, meant later for excavation of parting rocks into them. Volumes and amount of these vessels is determined depending on mining conditions and parameters of stripping equipment. Therefore, a part of volumes of transport stripping is redistributed to non-transport stripping.

EFFECT: lower costs of stripping operations and less harmful blowouts into atmosphere from vehicle transport.

1 ex, 1 tbl, 1 dwg

FIELD: mining industry, in particular, technology for extracting mineral resource deposits, possible use for extracting ores of balance and over-balance resources during extraction of mineral resources.

SUBSTANCE: method includes preparing the massif, supplying reagents, draining solutions, sedimentation of useful components. Ore sections of useful components are detected in massif beyond limits of pit contour above the level of depression cone. These massif portions in pit sides are subjected to explosive crushing, well is drilled to upper area of each prepared ore section, and then lixiviation solutions with reagents are fed into the well. Solutions, self-flowing downwards along ore section, lixiviate metal and then enter common flow of underground waters, formed by depression cone. Sedimentation of metal is performed in the pit on geo-chemical barrier, in place of common exit of subterranean waters.

EFFECT: ensured fullness of extraction and high efficiency when completing a formation in accordance to open method.

3 cl, 2 dwg

FIELD: mining industry, possible use mainly during extraction of argillaceous placers by open method.

SUBSTANCE: method includes mechanical shrinkage of mass and extraction of sands using digging-transporting equipment. Shrinkage of mass is performed with creation of crowns, and extraction of sands is performed by cutting off aforementioned crowns.

EFFECT: increased recovery of useful components from argillaceous sands of mass, containing large pieces.

4 cl, 8 dwg

FIELD: mining, particularly opencast mining of mineral deposits in the case of limited vertical ore bodies, for instance kimberlite pipes.

SUBSTANCE: method involves forming pit sides having inclinations less than minimal possible ones to provide pit side stability; preparing rock for further excavation by drilling-and-blasting operations; transporting ore and overburden via main incline by wheeled vehicle; forming transfer point plate at the second stage; excavating up to design depth along with forming pit sides having maximal possible inclinations, which provide pit side stability; cutting main incline from transfer point plate, wherein inclination thereof is increased in longitudinal direction; cutting ore pillars of the first stage; forming pit side having high ledges; forming lower ledge along ore body outline; forming temporary incline in one pit part; transporting ore and overburden to transfer point plate by means of caterpillar vehicle; forming temporary incline to provide pit cutting to design depth and cutting ore pillars under temporary incline.

EFFECT: increased efficiency of deposit excavation due to reduced overburden volume within the bounds of deep limited pits.

3 cl, 1 ex, 1 tbl, 4 dwg

FIELD: mining, particularly opencast mineral mining.

SUBSTANCE: method involves stepping rock up to design outline with leading in the first stage pit edge; transporting ore along main decline to plant and stacking overburden in dump; excavating connection entry between the first stage pit and the second stage pit so that the entry is opened in previously excavated the first stage pit; cutting the second stage pit; transporting ore and overburden from the second order pit via connection entry; depositing overburden from the second order pit in the first stage pit goaf after termination of the first stage pit excavation. Before ore and overburden transportation from second order pit via connection entry overburden excavated from the second order pit is accumulated in outer dump. Overburden from the second order pit is conveyed to day surface along temporary decline system. When the second pit side reaches designed outermost outline temporary declines are killed.

EFFECT: reduced costs of deposit development and decreased hazardous action of mining operations on environment.

4 cl, 4 dwg, 2 tbl, 2 ex

FIELD: mining industry, possible use during extraction of coal, ore and non-ore deposits by open method.

SUBSTANCE: in accordance to method, geological structure of massif is analyzed, position of potential sliding surface is detected, physical and mechanical properties of rocks are determined. Along profile parallel to edge of shelf in its middle portion, frequency of alternation of impulses of natural electromagnetic radiation is measured. On intervals where this frequency exceeds level of background radiation more than 2 times, interval-wise measurement of relation of strength level of signal electric field at two working frequencies is performed. By means of computed logarithmic dependence, depth of location of potential sliding surface is determined. With consideration of change of this depth, structure of massif, technological parameters and physical-mechanical properties of rocks, values of stability reserve coefficients are calculated on basis of ratio of momentums of holding and moving forces within limits of detected dangerous portion. Probability of landslide development is evaluated on basis of minimal values of stability reserve coefficients.

EFFECT: increased precision when predicting stability of quarry sides.

2 cl, 1 ex, 1 tbl, 4 dwg

FIELD: mining industry, possible use in deep quarries extracted with utilization of motor and conveyor transport.

SUBSTANCE: method includes transportation of rock mass from excavation faces by dump trucks and loading it through mobile crusher plant, mounted at temporarily shut down section of quarry, and transit ribbon conveyor, located in the mine on end side of quarry, onto ribbon conveyor lift, positioned in mines on end side of quarry. After update of quarry with positioning of mobile crusher plant at temporarily shut down section of quarry side, transit conveyor is disassembled, crusher block from mobile crusher plant is moved and mounted above end section of conveyor lift, in semi-trench driven preliminarily to subjacent safety bench a bunker is assembled with plate feeder for loading crusher block, while block of rocks formed below previous locations of mobile crusher plant and dump truck unload points is extracted with transportation and loading of exploded rock mass from dump trucks and rotary platform of main ramp through bunker with feeder and through crusher block from mobile crusher plant.

EFFECT: no need for moving crusher plant and for additional motor transport unit between crusher plant and conveyor lift.

2 dwg

FIELD: mining industry, applicable in opencast mining of hard rocks.

SUBSTANCE: the method consists in multirow drilling of the block to be blasted by holes of a permanent diameter, charging of the holes by explosive, connection of the explosive charges by a blasting network and short-delay blasting of them. The quantity of the energy of the charges in the lower part of odd rows is increased, for example, by drilling of parallel drawn together holes, whose charges are not similar is height, or by expansion of the holes in this part. The net of arrangement of charges of the even and odd rows is also increased. The order of blasting is provided by laying of the blasting network, each charge of the even order is blasted after weakening the mass broken by it by blasting of the increased charges of the previous odd row. In this case the quantity of the energy of an elementary charge of holes of each row approaches the quantity of the energy required for blasting destruction of the mass broken by them, thus providing the preset degree of crushing and enhancing of the blast efficiency.

EFFECT: enhanced yield of rock mass from one running meter of the hole, reduced consumption of explosive for breaking due to rational placement of the explosive in the mass.

4 dwg, 1 tbl

FIELD: mining industry, particularly open cast mining.

SUBSTANCE: method involves loading tanks at lower horizon during tank unloading at upper horizon and lowering empty tanks from upper horizon during loaded tank lifting from lower horizon; providing additional sites for tank loading at lower horizon and corresponding additional sites for tank unloading at upper horizon; laying cable in zigzag manner so that the cable passes along loading and unloading sites and creates pulling branches; connecting tank with aerostat to each pulling branch. Tanks located at upper and lower horizons are fastened to next nearest branch so that distances between loading and unloading sited along the branches are equal one to another. Device for above method realization is also disclosed.

EFFECT: increased capacity.

2 cl, 2 dwg

FIELD: earth-moving equipment, particularly machines for ground cutting, pit excavation for hydraulic structure, large-scale object building, as well as for mineral deposit development.

SUBSTANCE: ditching and transportation rig comprises basic chassis connected with earth-moving module and with transportation-handling devices, which move ground in vertical and horizontal directions. Earth-moving module is made as bucket rotary drum secured by means of vertical and horizontal hinges, as well as control-rods to the basic chassis so that the bucket rotary drum may rotate in vertical and horizontal planes and overhanging length thereof may be changed. Device is provided with continuous-type conveyer unit made as auger system and as telescopic pipe pivotally connected with transportation-handling device, which move ground in horizontal direction. Horizontal auger is located inside bucket rotary drum and is offset with respect to drum axis so that auger axis is parallel to drum axis. The horizontal auger is transversal to inclined auger having lower end installed under outlet end of horizontal auger. Upper end of inclined auger is pivotally fastened to upper telescopic pipe section. Transportation-handling device, which moves ground in horizontal direction, is made as endless band installed on length-adjustable telescopic sliding frame, which may change ground displacement distance by means of tightening rollers. Rollers have pins installed at different heights sliding in telescopic frame grooves. The telescopic frame has flanging. Lower telescopic pipe section is provided with rotary hinge connected to telescopic frame flanging so that rotary hinge may perform longitudinal movement with respect to frame flanging. Transportation-handling device, which provides vertical ground movement is composite and made as continuous-type bucket bands mating each other in transfer points.

EFFECT: increased ability and speed of pit excavation, reduced costs of ground excavation and transportation outside the pit and provision of continuous technological cycle.

2 cl, 8 dwg

FIELD: mining art, in particular, open-pit mining of mineral resources by high benches.

SUBSTANCE: large-diameter single holes are replaced by a pair of divergent holes of a smaller diameter, in which one hole is always vertical, and the other one is inclined towards the bench; the single holes of the larger diameter are replaced with a pair of divergent bundles of parallel converged holes, in which one bundle is vertical, and the other is inclined towards the bench; the single holes of the larger diameter are replaced with a pair of divergent holes of a smaller diameter, in which one hole is vertical, and the other is inclined towards the bench and positioned in the vertical plane parallel with the first one and distant from it by 1-2 hole diameters; the single holes of the larger diameter are replaced by a pair of divergent bundles of parallel converging holes, in which one bundle is vertical, and the other is inclined towards the bench and positioned in the vertical plane parallel with the first one and distant from it by 1-2 hole diameters.

EFFECT: enhanced efficiency of blasting of the benches.

7 cl, 6 dwg

FIELD: mining industry.

SUBSTANCE: method includes dividing quarry on rows, of which first one is extracted to planned depth with external dump-forming, and extraction of following rows is performed with use of internal dump-forming, placing dug rocks to extracted space of adjacent row with common displacement of dump front with development of mining operations. Second and following rows of quarry are divided on basis of height on extraction levels, extraction of uppermost level is performed with placement of dug rocks in upper dump level of extracted space of adjacent row, using surface transporting communication lines, and during extraction of second extractive level dumping of dump level of inner dump is primarily performed by forming pioneer dump at longitudinal processed edge of quarry, on upper area of which transporting lines are placed and dumping of dump level is performed from there, with descent of mining operations in working area of extractive level profile of upper dump area is altered to provided necessary cargo communications of working horizons of extractive level to dump level, after extraction of extractive level remaining pioneer dump is dug to upper mark of following extractive level, and extraction of following extractive levels is performed analogically, using reformed upper area of pioneer dump.

EFFECT: higher efficiency.

10 dwg

FIELD: mining industry.

SUBSTANCE: method includes cutting steps with varying angles. Angles of double step slopes, different on basis of quarry depth, are formed with consideration of decrease of irregularity parameters with deposit depth, with natural block level of upper horizons and influence from mass explosions and wind erosion of rocks with gradual increase of their steepness until forming of vertical slopes of double steps during additional operations in quarry, while angles of slopes and edge portions on upper horizons in highly fractured rocks may be 50-55, in rocks of average and non-specific fracture levels - 70-60 and in low-fractured rocks may be 80-85, and edge portions 60-90 m high in deep portion of quarry with vertical double steps and preventive berms 10 m have slant angle 80-85.

EFFECT: higher efficiency.

6 dwg, 1 tbl, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes extraction of quarry to planned depth with use of quarry ore chutes with accumulating bunkers, cutting ore chutes with deepening of mining in quarry, crushing ore blocks and pieces from face from bunker walls by explosives, loading ore to railway vehicles, cutting and shutting upper portion of ore chutes at each level when mining approaches there is performed by division on beds and semi-shelves with charges in wells, providing for crushing of rock to needed dimensions and safety of mine walls, and further decrease of pieces size and increasing efficiency of ore chute operation by excluding ore suspension is achieved by use of crushing assembly in form of bowl with plate at base, working as anvil under layer of rock, from where ore mass is self-propelled to bunker, and from there by feeder is sent to crusher and further through intermediate conveyer to main conveyer.

EFFECT: higher efficiency.

4 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes extracting quarry to planned depth by ore and rocks extraction by displacement of shelves along horizons with transferring to crushing plants, crushing rocks and then delivering them by lifting device to the surface, during extraction of quarry to planned depth at first stage during construction of board at the end of quarry in zone of decrease of power of deposit in stable rocks conveyer rope system is constructed, connected to hoisting machine, to bed with recesses, allowing to raise crushed material to large height at steep angle and with deepening of mining and displacement of crushers to lower horizons conveyer system is extended to provide for optimal transport shoulder for gathering vehicles.

EFFECT: higher efficiency, higher productiveness.

2 cl, 6 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes opening deposit of mineral resource along its length, extraction of opened rocks in shelves, forming on one of the portions of deposit of forward extracted space reaching planned bottom, moving rocks to external dumps and into extracted space, processing and transporting of mineral resource. Deposit extraction is performed in two directions - perpendicularly to length of deposit with deepening and along length to quarry bottom, while volume of extraction of mineral resource along length is increased and volume of extraction of resources perpendicularly to length is proportionally decreased.

EFFECT: higher efficiency.

2 cl, 3 dwg

FIELD: mining industry.

SUBSTANCE: method includes serial extraction of drifts with placement of opened rocks of drifts in extracted space of previous drifts, continuous combined processes of softening, extraction and movement of rock to dump. Drifts are positioned along cut trench, extraction is performed by adjacent horizontal shavings of face area, rock of each drift is moved by throwing directly to extracted space and compacted in range by realization of kinetic energy of rock.

EFFECT: higher efficiency.

2 dwg

FIELD: mining industry, applicable for slanting of high benches at development of magmatic deposits of mineral resources by open pit.

SUBSTANCE: the method includes drilling of contour holes for formation of a screening peephole, buffer and breaking holes to a depth corresponding to the height of one working subbench with a redrill, the middle row of breaking holes is made with an incomplete drill, charging of the openings and their blasting, dispatch of the rock, after blasting first of outline openings, for formation of the screening peephole, and then of breaking holes and mucking of the rock, similar operations are performed on the underlying subbench of the lower high bench, at the development of the lower high bench, the development of the upper and lower benches is conducted by doubling of the working subbenches, at the development of the lower subbench of the upper high bench the outline openings are drilled to the whole height of the doubled bench, the buffer openings are drilled at a distance of 12 to 13 diameters of the charge from the outline openings and to a depth at least corresponding to the height of one working subbench with a redrill equal to 6-8 diameters of the charge, the first and last rows of the breaking holes are drilled with a redrill, equal to 4-5 diameters of the charge, and the incomplete drill of the middle row of the breaking holes makes up 7-8 diameters of the charge, after blasting of the buffer and breaking opening and mucking of the rock a crest is formed, from whose surface on the side of the slope outline and buffer openings are drilled, the first ones - to the height of doubled subbenches, and the second ones - to the height at least of one lower working subbench, then the breaking openings to the same height as in the above - and underlying subbenches and for production of a natural protective bank on the upper section of the lower high bench in the section of the berm the formed ridge is liquidated by drilling, charging and blasting of the openings of small diameter and depth.

EFFECT: enhanced stability of high benches on the outline of the open pit.

2 cl, 3 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes opening deposit at distance 150 meters from river and forming of natural filtering wall between river and trench, pumping of water from trench into river, extraction of mineral resource, revegetation of dumps, filling of trench with water, accomplishment of formed water body. Mineral resource is extracted from two serially opened trenches - auxiliary, revegetated as water body, and main, positioned at opposite side of river, and soil from opening of which is used for revegetation of auxiliary trench, while in main trench along whole board on the side of river right beyond mining operations inner dump is formed with width not less than 250 meters and with height at same level with earth surface, water from trenches is fed into river, and then into water body through intermediate collectors, while after forming of water body currents of soil waters between trenches and river are made balanced, balance level is estimated on basis of water levels in auxiliary trench and river.

EFFECT: higher efficiency.

1 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes extraction of quarry to planned depth in stages with construction f boards with parameters, allowed from stability condition, shutting boards, finishing mineral resource massif. Building and shutting of temporary boards during extraction of steep layers of next level after change of order of extraction of opening and ore zones is started after construction and spacing in center of cut of well-like mine with vertical shelves, with parameters, which are provided for by minimal radiuses of rounded edges enough for movement of rock via spiral chutes to surface to outer dumps, with narrowing space towards bottom at level of opened level of deep portion of deposit with lesser total coefficient of opening of stage and finally board is constructed by steep vertical shelves in deep zone.

EFFECT: higher efficiency.

1 ex, 10 dwg

Up!