Booster turbo-pump aggregate with the axial pump

FIELD: rocket engineering; production of the booster turbo-pump aggregates with an axial pumps used in them.

SUBSTANCE: the invention is pertaining to the field of rocket engineering, in particular, to production of the booster turbo-pump aggregates with the axial pumps used in the liquid rocket engines (LRE). The booster turbo-pump aggregate consists of the body (1), in which there is the pump (3) axial wheel fixed on the shaft (2) and the wheel of the hydraulic turbine (4). The wheel of the hydraulic turbine (4) is connected to the axial wheel of the pump (3) by soldering along its outer diameter. The shaft (2) rests on the fixed bearing (5) and on the movable bearing (6). The axial stops (7) and (8) of the body (1) eliminate the possibility of the axial motion of the fixed bearing (5) with respect to the body (1), and consequently, the motion of the shaft (2). The movable bearing (6) may have the shift in the axial direction concerning the body (1) because of the difference of the axial power and thermal deformations of the body (1) and the shaft (2). From the side of the axial intake in the body there is the axial stop (9). Between the axial stop of the body (1) and the movable bearing (6) the axial spring (10) is installed. The support ring (11) is mounted between the axial spring (10) and the movable bearing (6). The axial spring (10) is made in the form of the resilient conical ring. The invention ensures the increased service life of the fixed bearing (5) and the service life of the whole aggregate.

EFFECT: the invention ensures the increased service life of the fixed bearing (5) and the service life of the whole aggregate.

3 cl, 1 dwg

 

The invention relates to the field of rocketry and can be used in liquid rocket engines (LRE).

In LPRE are used booster turbopump units with axial pump comprising an axial impeller pump attached to the peripheral part of the impeller turbines. Such booster turbopump units due to simplicity of construction and are highly reliable.

Known booster turbopump Assembly for a rocket engine with an axial pump, comprising a housing, placed in it a shaft, which on the one hand installed axial pump impeller and attached to the periphery of the turbine wheel, and on the other side there is fixed in the housing of the axial stops of the bearing housing and movable in the axial direction relative to the housing bearing.

(Patent of Russian Federation №2135811, IPC F02K 9/95, 1997 - prototype).

This booster turbopump Assembly has the following disadvantage.

When working booster turbopump Assembly at its impeller operates the axial force generated due to them by the pressure differential. This axial force acts in the direction from output to input into the pump and is perceived is fixed in the axial direction relative to the housing by a bearing. The higher the pressure differential created by the pump, the Bo is the more axial force, acting on the bearing.

Consequently, the fixed bearing has a limited resource, which may be insufficient for modern rocket engines with multiple on and for a long time.

Object of the present invention is to eliminate this drawback booster turbopump Assembly with axial pump and increase the resource by reducing the axial load acting on the fixed bearing.

This object is achieved in that the booster turbopump Assembly with axial pump, comprising a housing and a shaft, which on the one hand installed axial pump impeller, and on the other hand fixed and movable bearings, while the fixed bearing is placed between the axial stops of the body, according to the invention, the housing-side rolling bearing, converted to axial wheel pump, made axial stops, and between the said stop and movable bearing mounted axial spring.

For installation and centering of the spring between the spring and the rolling bearing mounted support ring.

To ensure minimal axial dimensions of the unit axial spring is made in the form of the elastic ring.

The proposed booster turbopump Assembly shown in the drawing, where

1 - case,

2 - shaft

3 - sevoie wheel pump,

4 - wheel turbines,

5 - fixed bearing,

6 is movable bearing,

7, 8 - axis emphasis stationary bearing,

9 is an axial stop of the rolling bearing,

10 is an axial spring,

11 - support ring,

12 - cavity feed pump,

13 - cavity, drainage pump,

14 - nozzle turbine,

15 - blade wheel of the turbine.

Booster turbopump Assembly consists of a housing 1, which has mounted on the shaft 2 axially of the pump impeller 3 and the turbine wheel 4. The turbine wheel 4 is connected with the axis of the pump impeller 3 on its outside diameter by soldering. The shaft 2 is based on the fixed bearing 5 and the movable bearing 6. Axial lugs 7 and 8 of the housing 1 to preclude axial movement relative to the housing 1 fixed bearing 5, and consequently the shaft 2. The movable bearing 6 can be displaced in the axial direction relative to the housing 1 due to the difference of the axial force and thermal deformations of the housing 1 and the shaft 2. From the axial inlet in the housing 1 has an axial stop 9. Between the axial stop 9 and the rolling bearing 6 is installed axial spring 10.

Between the axial spring 10 and the rolling bearing 6 mounted support ring 11.

Axial spring 10 is made in the form of an elastic conical rings. The booster pump turbopump Assembly has a cavity about which avago supply 12 and the axial cavity of the outlet 13. In the housing 1 has a nozzle of the turbine 14. The turbine wheel 4 is made rotor blades 15.

Before you start working on the movable bearing 6 applies the axial force of the axial spring 10. This effort is directed toward the axis of the outlet 13. On the fixed bearing 5 applies an axial force opposite sign, resulting in the shaft 2 together with the axis of the pump impeller 3 and the turbine wheel 4 is in the equilibrium position.

When working booster turbopump Assembly, the working fluid flows in an axial inlet 12 of the pump and forth in the axial pump impeller 3 and is discharged through the axial outlet 13. To the nozzle of the turbine 14 is fed to the working fluid of high pressure, which then enters the rotor blades 15 of the turbine wheel 4. After working blades of the working fluid is mixed with the liquid flowing from the axial wheel pump 3.

During operation, the movable bearing 6 applies the axial force of the axial spring 10, is directed towards the axis of the outlet 13 of the pump.

In the result of exposure to the axis of the pump impeller 3 by axial retraction 13 high pressure generated by the pump, axial wheel acting axial force directed toward the axial inlet 12. The magnitude of this force can be up to several thousand kilonewton.

The axial force from the axial wheel pump 3, act is it on the shaft 2, and the axial force from the axial spring 10, is transmitted to the shaft 2 through the support ring 11 and the movable bearing 6, is directed oppositely. Fixed bearing 5 senses the difference of the axial force acting on the axis of the pump impeller 3, and axial forces from the axial spring 10. As the movable bearing 6 there is an increased radial force against the fixed bearing 5, the axial force of the spring is selected less than half the axial forces acting on the axis of the pump impeller 3. This is achieved by alignment of the load is fixed and rolling bearings axial and radial forces. Thus, the use of axial springs 10, defined by the axial wheel pump 3 between the axial stop 9 of the housing 1 and the rolling bearing 6, provides a reduction of the axial force acting on the fixed bearing 5. This increases the durability of the fixed bearing 5 and the resource only booster turbopump Assembly.

1. Booster turbopump Assembly with axial pump, comprising a housing and a shaft, which on the one hand installed axial pump impeller, and on the other hand fixed and movable bearings, while the fixed bearing is placed between the axial stops of the housing, characterized in that in the case of PADI the aqueous bearing, converted to axial wheel pump, made axial stops, and between the said stop and movable bearing mounted axial spring.

2. Booster turbopump Assembly according to claim 1, characterized in that between the spring and the rolling bearing mounted support ring.

3. Booster turbopump Assembly according to claim 1, characterized in that the axial spring is made in the form of the elastic ring.



 

Same patents:

FIELD: liquid propellant rocket power plants with turbopump units.

SUBSTANCE: the liquid propellant rocket power plant having liquid-hydrogen and liquid-oxygen tanks with booster pumps and main turbopump units uses also an electrochemical generator with an oxygen inlet and outlet and a hydrogen inlet and outlet, oxygen ejector, hydrogen ejector and two electric motors, one of which is connected to the shaft of the oxygen booster pump, and the other-to the shaft of the hydrogen booster pump, the oxygen inlet of the electrochemical generator is connected through a pipe to the gas cushion of tank with liquid oxygen, and the outlet-to the inlet of oxygen ejector, whose outlet is connected to the gaseous oxygen supply pipe to the reaction chamber: the hydrogen inlet of the electrochemical generator is connected through a pipe to the gas, cushion of the tank with liquid hydrogen, and the outlet is connected to the inlet of the hydrogen ejector, whose outlet is connected to the gaseous hydrogen supply line to the reaction chamber.

EFFECT: provided reliable multiple starting of the liquid propellant rocket power plant.

1 dwg

FIELD: rocketry.

SUBSTANCE: according to proposed method of creating thrust of liquid-propellant rocket engine with circulation of heat carrier based on taking of propellant components from tanks, increasing their pressure by pumps driven by turbine and introducing them into gas generator and combustion chamber, combustion of components in gas generator and chamber and creating thrust with ejection of combustion products through nozzle, when introducing component of propellant and products of their gasification into combustion chamber, tangential speed component is imparted to them and part of combustion products is replaced by heat carrier and in process of recirculation it is successively expanded at higher pressure of diverting part of nozzle, cooled, condensed in head exchanger-condenser, pressure is raised by pump and it is then delivered to near-critical part of nozzle to repeat the cycle. Liquid-propellant rocket engine with closed circuit of heat carrier contains chamber with mixing head and regenerative cooling duct, turbopump set with oxidizer and propellant pumps whose output main lines are connected with said mixing head of chamber and gas generator, and said closed circuit of heat carrier is formed with successively interconnected circulating pump, unit to introduce heat carrier to near-critical area of nozzle, heat exchanger-condenser, means to supply condensed component to input of circulating pump. According to invention, closed circuit is provided with section of diverting part of nozzle on which ring ribs made of heat-resistant material are secured over circumference.

EFFECT: reduced cost of launching of useful load into orbit.

5 cl, 3 dwg

FIELD: classic and return launch vehicles.

SUBSTANCE: proposed low-thrust cryogenic propulsion module contains main cryogenic engine 10, two auxiliary engine 21, 22 to control position in space, cryogenic ergol supply tanks 31, 32, 33, 34, device for periodically building pressure in tanks 31, 32, 33, 34 and device to generate explosive pulses of main cryogenic engine at pulse mode during period of pressure building in tanks 31, 32, 33, 34. Device to periodically build pressure in tanks 31, 32, 33, 34 has heat exchange system connected with heat accumulator 61, 62 and device 71,72 to excite circulation of preliminary set amount of ergol in heat exchange system. Module contains additionally device for heating heat accumulator 61, 62 in period between two sequential explosive pulses.

EFFECT: improved mass-and-dimension characteristics of module, reduced time taken for execution of task.

17 cl, 14 dwg

FIELD: rocket and space engineering.

SUBSTANCE: proposed liquid-propellant rocket engine has chamber. Bypass main line with flow rate regulator passing part of fuel into chamber by-passing cooling duct is installed in parallel to line of fuel delivery for cooling.

EFFECT: increased service life of engine chamber owing to reduction of thermal stresses in inner wall.

1 dwg

FIELD: rocketry, in particular, liquid-propellant rocket engines using helium as a cooler of the engine chamber body.

SUBSTANCE: the liquid-propellant rocket engine has an engine chamber consisting of a combustion chamber and a nozzle, having regenerative-cooling ducts, turbopump assembly including centrifugal pumps of oxidizer, fuel and helium, neutral gas generator fed from the pumps of oxidizer and fuel, and the outlet of the helium pump is coupled to the regenerative cooling passage of the combustion chamber, whose outlet is coupled to the mentioned gas generator, the outlet of the gas generator is coupled to the turbine of the turbopump assembly, whose outlet is coupled to the oxidizer supply line to the combustion chamber mixing head. Besides, cooling of the chamber nozzle is effected by fuel, which, having passed through the regenerative cooling ducts, is supplied to the mixing head. The combustion chamber of the engine chamber and the gas generator operate at a stoichiometric relation of the fuel components. Introduction of the helium additive to the combustion products of the main fuel components to the neutral gas generator and further to the engine combustion chamber makes it possible to enhance the engine specific thrust pulse approximately by 20S, and, with regard to denial of screen cooling, approximately to 30S and more.

EFFECT: enhanced engine specific thrust pulse.

1 cl, 1 dwg

FIELD: liquid-propellant rocket engines.

SUBSTANCE: proposed system includes lines of different propellant components, gas lines and gas generator. Mounted in front of main turbo-pump unit with multi-stage propellant component pump and drive gas turbine is booster turbo-pump unit with propellant component pump and drive single-stage hydraulic turbine fed from "n" stage of main pump. Working passage of hydraulic turbine is located in connecting line between outlet of "n" stage and inlet of "(n+1)" stage of main pump.

EFFECT: simplified construction; reduced mass of liquid propellant.

3 cl, 1 dwg

The invention relates to liquid propellant rocket engines (LPRE), particularly to a rocket engine turbopump with fuel consisting of separately stored oxidizer and fuel

FIELD: liquid-propellant rocket engines.

SUBSTANCE: proposed system includes lines of different propellant components, gas lines and gas generator. Mounted in front of main turbo-pump unit with multi-stage propellant component pump and drive gas turbine is booster turbo-pump unit with propellant component pump and drive single-stage hydraulic turbine fed from "n" stage of main pump. Working passage of hydraulic turbine is located in connecting line between outlet of "n" stage and inlet of "(n+1)" stage of main pump.

EFFECT: simplified construction; reduced mass of liquid propellant.

3 cl, 1 dwg

FIELD: rocketry, in particular, liquid-propellant rocket engines using helium as a cooler of the engine chamber body.

SUBSTANCE: the liquid-propellant rocket engine has an engine chamber consisting of a combustion chamber and a nozzle, having regenerative-cooling ducts, turbopump assembly including centrifugal pumps of oxidizer, fuel and helium, neutral gas generator fed from the pumps of oxidizer and fuel, and the outlet of the helium pump is coupled to the regenerative cooling passage of the combustion chamber, whose outlet is coupled to the mentioned gas generator, the outlet of the gas generator is coupled to the turbine of the turbopump assembly, whose outlet is coupled to the oxidizer supply line to the combustion chamber mixing head. Besides, cooling of the chamber nozzle is effected by fuel, which, having passed through the regenerative cooling ducts, is supplied to the mixing head. The combustion chamber of the engine chamber and the gas generator operate at a stoichiometric relation of the fuel components. Introduction of the helium additive to the combustion products of the main fuel components to the neutral gas generator and further to the engine combustion chamber makes it possible to enhance the engine specific thrust pulse approximately by 20S, and, with regard to denial of screen cooling, approximately to 30S and more.

EFFECT: enhanced engine specific thrust pulse.

1 cl, 1 dwg

FIELD: rocket and space engineering.

SUBSTANCE: proposed liquid-propellant rocket engine has chamber. Bypass main line with flow rate regulator passing part of fuel into chamber by-passing cooling duct is installed in parallel to line of fuel delivery for cooling.

EFFECT: increased service life of engine chamber owing to reduction of thermal stresses in inner wall.

1 dwg

FIELD: classic and return launch vehicles.

SUBSTANCE: proposed low-thrust cryogenic propulsion module contains main cryogenic engine 10, two auxiliary engine 21, 22 to control position in space, cryogenic ergol supply tanks 31, 32, 33, 34, device for periodically building pressure in tanks 31, 32, 33, 34 and device to generate explosive pulses of main cryogenic engine at pulse mode during period of pressure building in tanks 31, 32, 33, 34. Device to periodically build pressure in tanks 31, 32, 33, 34 has heat exchange system connected with heat accumulator 61, 62 and device 71,72 to excite circulation of preliminary set amount of ergol in heat exchange system. Module contains additionally device for heating heat accumulator 61, 62 in period between two sequential explosive pulses.

EFFECT: improved mass-and-dimension characteristics of module, reduced time taken for execution of task.

17 cl, 14 dwg

FIELD: rocketry.

SUBSTANCE: according to proposed method of creating thrust of liquid-propellant rocket engine with circulation of heat carrier based on taking of propellant components from tanks, increasing their pressure by pumps driven by turbine and introducing them into gas generator and combustion chamber, combustion of components in gas generator and chamber and creating thrust with ejection of combustion products through nozzle, when introducing component of propellant and products of their gasification into combustion chamber, tangential speed component is imparted to them and part of combustion products is replaced by heat carrier and in process of recirculation it is successively expanded at higher pressure of diverting part of nozzle, cooled, condensed in head exchanger-condenser, pressure is raised by pump and it is then delivered to near-critical part of nozzle to repeat the cycle. Liquid-propellant rocket engine with closed circuit of heat carrier contains chamber with mixing head and regenerative cooling duct, turbopump set with oxidizer and propellant pumps whose output main lines are connected with said mixing head of chamber and gas generator, and said closed circuit of heat carrier is formed with successively interconnected circulating pump, unit to introduce heat carrier to near-critical area of nozzle, heat exchanger-condenser, means to supply condensed component to input of circulating pump. According to invention, closed circuit is provided with section of diverting part of nozzle on which ring ribs made of heat-resistant material are secured over circumference.

EFFECT: reduced cost of launching of useful load into orbit.

5 cl, 3 dwg

FIELD: liquid propellant rocket power plants with turbopump units.

SUBSTANCE: the liquid propellant rocket power plant having liquid-hydrogen and liquid-oxygen tanks with booster pumps and main turbopump units uses also an electrochemical generator with an oxygen inlet and outlet and a hydrogen inlet and outlet, oxygen ejector, hydrogen ejector and two electric motors, one of which is connected to the shaft of the oxygen booster pump, and the other-to the shaft of the hydrogen booster pump, the oxygen inlet of the electrochemical generator is connected through a pipe to the gas cushion of tank with liquid oxygen, and the outlet-to the inlet of oxygen ejector, whose outlet is connected to the gaseous oxygen supply pipe to the reaction chamber: the hydrogen inlet of the electrochemical generator is connected through a pipe to the gas, cushion of the tank with liquid hydrogen, and the outlet is connected to the inlet of the hydrogen ejector, whose outlet is connected to the gaseous hydrogen supply line to the reaction chamber.

EFFECT: provided reliable multiple starting of the liquid propellant rocket power plant.

1 dwg

FIELD: rocket engineering; production of the booster turbo-pump aggregates with an axial pumps used in them.

SUBSTANCE: the invention is pertaining to the field of rocket engineering, in particular, to production of the booster turbo-pump aggregates with the axial pumps used in the liquid rocket engines (LRE). The booster turbo-pump aggregate consists of the body (1), in which there is the pump (3) axial wheel fixed on the shaft (2) and the wheel of the hydraulic turbine (4). The wheel of the hydraulic turbine (4) is connected to the axial wheel of the pump (3) by soldering along its outer diameter. The shaft (2) rests on the fixed bearing (5) and on the movable bearing (6). The axial stops (7) and (8) of the body (1) eliminate the possibility of the axial motion of the fixed bearing (5) with respect to the body (1), and consequently, the motion of the shaft (2). The movable bearing (6) may have the shift in the axial direction concerning the body (1) because of the difference of the axial power and thermal deformations of the body (1) and the shaft (2). From the side of the axial intake in the body there is the axial stop (9). Between the axial stop of the body (1) and the movable bearing (6) the axial spring (10) is installed. The support ring (11) is mounted between the axial spring (10) and the movable bearing (6). The axial spring (10) is made in the form of the resilient conical ring. The invention ensures the increased service life of the fixed bearing (5) and the service life of the whole aggregate.

EFFECT: the invention ensures the increased service life of the fixed bearing (5) and the service life of the whole aggregate.

3 cl, 1 dwg

FIELD: rocket engineering; production of the devices for the liquid propellant rocket engines.

SUBSTANCE: the invention is pertaining to the field of rocket engineering and may be used in the liquid propellant rocket engines (LPRE). The device for separation of the pump and the turbine of the booster turbo-pump aggregate of the LPRE consists of the pump (2), the turbine (3), the separating cavity (1) located between the pump (2) and the turbine (3) and the external intake tract (4). The separating cavity (1) is limited from the side of the pump (2) by the shaft gasket (5), which diameter is made smaller than the diameter of the shaft (10) in the area of the seat of the bearing of the turbine (11), and from the side of the turbine (3) - by the unloading disk (6) aligned with the turbine impeller (7). On the turbine impeller (7) there is the gasket of the unloading disk (8). The axial impeller of the pump (9) and the turbine impeller (7) are fixed on the shaft (10). From the direction of the turbine (3) the shaft (10) rests on the turbine bearing (11), which is brought out beyond the bounds of the separating cavity (1) and is installed from the direction of the pump (2). The cavity of the turbine bearing (12) which is adjoining the shaft gasket (5) is connected by the delivery channels (13) with the pump outlet (14). The offered device ensures the minimum losses of the power used for separation of the pump and the turbine, and also the effective refrigeration of the bearings by the liquid monophase hydrogen.

EFFECT: the invention ensures the minimum losses of the power used for separation of the pump and the turbine, the effective refrigeration of the bearings by the liquid monophase hydrogen.

2 cl, 2 dwg

FIELD: rocket engineering; production of the liquid propellant rocket engines.

SUBSTANCE: the invention is pertaining to the field of rocket engineering, in particular, to production of the liquid propellant rocket engines powered by the cryogenic oxidant and the hydrocarbon propellant. The liquid propellant rocket engine contains the combustion chamber with the tract of the regenerative cooling, the turbo-pumping aggregate with the turbine having the inlet and outlet trunks, and the pumps of the oxidant and the propellant, for which the outlet of the propellant p[ump is connected through the propellant valve to the combustion chamber, and the outlet of the oxidant pump through the oxidant valve is connected to the gas generator. At that the turbo-pump aggregate contains the additional propellant pump, which inlet is connected to the outlet of the propellant pump, and the outlet is connected to the gas generator through the high pressure pipeline, in which there is the high-pressure valve and the consumption regulator. In the trunk of the turbine there is the thrust regulator, to which the on-board trunk and the starting trunk with the return valve and the connector are connected. The method of the liquid propellant rocket engine starting provides for the spinning-up of the turbo-pump aggregate and opening of valves of the oxidant, the propellant, the propellant in the high-pressure trunk, run-up of the turbine conduct a compressed air from a land bulb, and the turbine spinning-up is exercised by the compressed air from the ground pressure vessel and the turbine drive at operation is exercised from the on-board vessel. The invention ensures simplification of the pneumatic-hydraulic circuit, the increased reliability, the increase of the power and the specific characteristics of the liquid propellant rocket engine, the decreased mass of the engines, the improved engine starting and cutoff and provision of the engine cleansing from the leavings of the propellant after the engine cutoff.

EFFECT: the invention ensures simplification of the liquid propellant rocket engine pneumatic-hydraulic circuit, the increased its reliability, power and specific characteristics, the decreased mass of the engine, the improved the engine starting, cutoff and cleansing from the leavings of the propellant after its cutoff.

4 cl, 1 dwg

FIELD: rocketry.

SUBSTANCE: invention relates to liquid-propellant rocket engines operating on cryogenic oxidizer and on hydrocarbon fuel. Proposed turbopump set of rocket engine contains the following parts of rotor of turbopump set mounted on shaft: oxidizer pump impeller, fuel pump impeller and turbine wheel arranged in housing of turbopump set and additional fuel pump with shaft and impeller of additional fuel pump. Design peculiarity of turbopump set is that magnetic clutch is installed between rotor of turbopump set and rotor of additional fuel pump. Driving disk of magnetic clutch is installed on shaft of turbopump set, and driven disk is mounted on shaft of additional fuel pump. Partition made on nonmagnetic material is found between driving and driven disks of magnetic clutch. Said partition is aligned with housing of additional fuel pump. Partition, driving and driven disks can be made spherical and/or provided with ribbing.

EFFECT: increased reliability of turbopump set.

5 cl, 3 dwg

Up!