Method for extracting gravel deposits under reaches of rivers, located in permafrost zones

FIELD: mining industry, in particular, extraction of gravel deposits by open method in permafrost zones under river beds, having alternation of crossings freezing in winter and non-freezing reaches.

SUBSTANCE: method includes drying a section of gravel deposits by draining water with pump plant, removal of ice and extraction of resources. Draining of water and extraction of resources is performed in winter period after freezing of crossings.

EFFECT: increased quantity of extracted resources.

 

The invention relates to mining, in particular to the development of placer deposits in the open way in the areas of distribution of permafrost.

Currently, in areas with severe climate in an open way developed a significant number of alluvial deposits. Unprocessed remain the most difficult deposits, for example, if they stretch for several kilometers, and the main stores are located in unconsolidated sediments beneath the river bed. Small and medium-sized rivers rapids alternate with stretches. Rifts have a small depth, so in the winter after freezing in these areas possible notch stocks. This method is used, for example, in the extraction of diamonds in Yakutia.

At pools because of their great depth, the mining stocks are technically possible only in summer, floating production machines, such as drag or dredge. However, due to the increased stoniness sediments (size boulders more than 600 mm) application dredger impossible. If you use the drag method, because of the increased size of the boulders will need a powerful dredge (with a capacity of scoops of not less than 250 litres and a weight of about 2000 tons)that for small fields is unacceptable due to the large capex. In addition, the existing legislation in the field of environmental protection prohibits work is in drag in flowing water.

The invention is directed to a method of developing placers on plesovych areas of the field, which to work by known methods impossible.

There is a method of developing areas of alluvial deposits in which to extract reserves from under the water used dredge (dredge). With drainage field is not carried out, and the seizure of stocks is carried out in the warm period (1).

The disadvantage of this method is the high loss of mineral reserves, the inability development krupnogabaritnykh rocks and unacceptable environmental standards pollution of watercourse during operation in the open bed of the river. Stock losses caused by the inevitable messagevine the pillars and moving parts loose stocks over the river outside the range of the developing body. Cut stock from under the water eliminates the possibility of visual and instrumental monitoring of the completeness of the testing of the reservoir. When mining stocks in the flowing direction is inevitable arrival of unacceptable environmental standards of suspended contaminants from the work zone of the developing body in the stream. In addition, working in a flowing water body involves unplanned downtime during the passage of flood water flow.

There is also known a method of placer developments, nahodyashihsya water, which is taken as a prototype, as the closest to the claimed technical solution (2). The method includes the drainage areas of placer and dredging inventory, which is carried out in the summer.

In the known method the drainage areas of placer is diverting the river (surface runoff) in the bypass (river bed diversion channel and removal of the soil (groundwater) flow through a network of drainage openings.

The disadvantage of this method is that to use it you must have in the valley deposits of vacant space, suitable for the terrain for the construction of a bypass (river bed diversion channel, and during construction, if required, the area has violated the additional surface area. Quite large and the capital cost of construction of such a channel. The main disadvantage is that this way it is impossible to completely drain the Cup of reach.

Task to be solved by the present invention is directed is the provision of test plesovych areas of placer and thereby increasing the efficiency of development of raw materials, located in severe climate conditions.

The technical result that can be obtained from the use of the invention is to increase the number of explored reserves by including both the Oia in the development plesovych plots placers.

This technical result is achieved due to the fact that in the method of mining of alluvial deposits beneath the reaches of the rivers located in the areas of distribution of permafrost, including drainage area placers and seizure of stocks, according to the invention drainage plesivogo plot is carried out in the winter after freezing rapids pumping out water pumping unit, placed on the ice surface plesivogo area placers, then spend cleaning ice and the notch stocks.

The published set of included features, each of which are necessary and together sufficient to achieve a technical result.

When conducting drying ples pumping out water during the winter period, when the first freeze of the active porous layer, which prevents the flow of ground water along the coastline, and then peremerzaesh unconsolidated sediments in the shallow waters and stops the movement of ground water under the river bed, is natural phenomenon complete isolation of the water in the bowl of reach from any of its revenues from outside.

Comparative analysis shows that the proposed method differs from the prototype. This allows to make a conclusion about conformity of the invention, the criterion of "Novelty".

For evidence of conformity of the invention, the criterion of "Inventive step" held updat the Executive search and comparison with other technical solutions, known from the sources.

In search of ways to develop plesovych areas of alluvial deposits in the areas of distribution of permafrost using drainage by pumping water pumping unit with the notch stocks in the winter is not found.

The inventive method development plesovych areas of alluvial deposits in areas of the permafrost zone meets the criterion of "Inventive step"as the totality of its distinctive features allows you to work plesovy areas of alluvial deposits in areas of the permafrost zone with minimal loss of the mineral in the ground and at an acceptable environmental damage to the natural environment, the draining of which diverting surface runoff and drainage of the soil flow is not possible, what is not clear from the prior art.

For evidence of conformity of the invention, the criterion of "Industrial application" should indicate that its use in the experimental procedure carried out in 2005 on the enterprise JSC "bottom-Lena" (Republic of Sakha-Yakutia).

The method is as follows. After the establishment of ice and freezing rifts when terminated surface and ground water runoff, ice plesivogo plot set Assou station. Determining the amount of water in the river and given a valid duration of the process of pumping water, pick up the necessary capacity of the pump.

The place for installation of the pumping station pick in the deepest place as close as possible to the lower boundary of the site. The pumped water is fed by the shortest distance along the pipe to the coastal edge. The chimney stack aligned on the track or built from snow dam with a reverse bias to provide gravity discharge of water supply in case the pump stops. Discharge of water from the pipe passes through the comb specially arranged from snow tailings embankment built along the coastal edge in a snow trench, traversed down the river. When lowering the ice on the river during water pumping this trench does not change the level of the bottom, which ensures seamless care of pumped water.

Upon completion of the pumping of water to produce a cleaning ice from the drained area and the notch stocks bulldozer or excavator way. Removed the stock is warehoused at the site of the processing plant for further processing in the summer.

The use of the invention in comparison with the known technical solutions will:

1. To carry out mining stocks with plesovych areas of alluvial deposits beneath the water of the rivers in areas situated the estrangement of permafrost with minimal loss of minerals in the bowels.

2. To minimize environmental damage.

3. To increase the number of explored fields.

Sources of information

1. Shorokhov S.M. Development of placer deposits and principles of design. M: Gosgortekhnadzor, 1963. p.27.

2. Shorokhov S.M. Development of placer deposits and principles of design. M: Gosgortekhnadzor, 1963. p.59 (prototype).

The method of mining of alluvial deposits beneath the reaches of the rivers located in the areas of distribution of permafrost, including drainage area placers and seizure of stocks, characterized in that the drainage plesivogo plot is carried out in the winter after freezing rapids pumping out water pumping unit, placed on the ice surface plesivogo plot, then spend cleaning ice and the notch stocks.



 

Same patents:

FIELD: sea mining industry, possible use for extracting fields of hard mineral resources located on the surface of ocean bottom, primarily iron-manganese burs represented mainly by horizontal or slightly inclined beds.

SUBSTANCE: plant for extracting iron-manganese burs from ocean bottom contains carrying watercraft, which carries tools for controlling the plant and mounting-technological equipment, bottom device for collecting iron-manganese burs, mounted on frame, device for running iron-manganese bur slurry with pumps, device for lifting iron-manganese burs up to surface of ocean, made in form of transporter connected to carrying watercraft. Watercraft is made in form of self-propelled floating platform. Transporter is mounted on frame and can be engaged with flexible mesh vessels. Bottom device for collecting iron-manganese burs is connected to self-propelled floating platform by means of tow chain and is made in form of transporter-driven track chassis and device for running slurry of iron-manganese burs by multi-sectional piston pumps for feeding slurry from ocean bottom into mesh vessels of transporter by means of loading-transit pipe.

EFFECT: development of reliable plant for extracting iron-manganese burs from ocean bottom, providing for highly productive extraction of iron-manganese burs under conditions of industrial extraction of iron-manganese burs.

16 cl, 16 dwg

FIELD: obtaining minerals from underwater, particularly to store and distribute powder materials of lifting hydraulic system used in ferromanganese and other concretion offshore production units.

SUBSTANCE: plant comprises producing ship connected to working tool installed on submersed platform by lifting pipeline. The production ship has vessel installed on platform which may move in vertical direction relatively mast provided with guide pulleys and connected to the ship along guiding means and rollers. One roller pair is secured to production ship, another pair is connected to platform and cooperates with guiding means. The production ship also has two winches with ropes, which move platform and vessel, cross-shaped vessel valve, pump connected to electric motor and discharge pipeline. The vessel is provided with two connection pipes. One connection pipe is located in upper vessel wall and fastened to lifting pipeline having gate, another connection pipe is located in lower part of side wall in front of pipe between thickening means, heater and pump. Plant has two temperature sensors. One temperature sensor is installed on funnel-shaped discharge pipeline part, another sensor and temperature relay are connected to side vessel wall. Tray with sectional gate is installed in panel orifice under the vessel.

EFFECT: provision of working liquid clarification after concretion hydro-transportation and discharged water and surrounding water temperature equalization.

2 dwg

FIELD: methods to develop underwater and flooded ferromanganesian concretion and phosphate shelf concretion deposits, as well as similar flooded and marine deposits mainly including horizontal and flat thin seams located on bed surface.

SUBSTANCE: draghead comprises frame body with upper, lower, side and rear walls, suction pipe of suction dredge, blades secured to intermediate bottom, which may rotate in vertical plane. The draghead is also provided with hydraulic abrasing unit having pressure pipe transversal to upper frame body wall. The pressure pipe is provided with hydraulic heads. The draghead comprises ball-and-socket hinge arranged in upper frame body orifice. Upper horizontal edge of rounded side wall is connected to inner surface of upper wall. Side wall flat part height and rounded part height thereof are related as 1:0.5. Ball-and-socket hinge and rounded part of side frame body have curvature radii in plane view equal to active suction dredge suction radius. Intermediate bottom is installed inside rounded side wall of frame body and may rotate with the use of two hydraulic cylinders about horizontal pin secured to rounded part of side frame body wall.

EFFECT: simplified structure and reduced losses in sludge lines.

7 dwg

FIELD: mining, particularly to produce ore and rock materials, for instance building materials.

SUBSTANCE: mining rig comprises pontoon with suction head having sludge receiving means, as well as crane for sludge receiving means lifting and lowering installed in front pontoon part. Sludge receiving means is lifted and lowered by suction head rotation about axle connected to pontoon. Rig comprises sludge line connected to sludge channel of suction head. The pontoon has U-shaped cross-section and is provided with additional crane arranged in rear part thereof. The suction head is made as downhole hydraulic tool having string composed of two parts in length direction. The parts are pivotally connected one to another. The string is arranged on pontoon so that the parts may be lowered in series. The cranes are portal. The axle is located in rear or front pontoon part.

EFFECT: possibility of mining work performing at variable development depth.

2 dwg

FIELD: rock mining, particularly to develop gravel-sand deposits.

SUBSTANCE: rid comprises body made as U-shaped pontoon and having docking mechanism, which provides connection of similar pontoon sections to maintain floatability thereof in the case of suction head weight increasing. The rig also has suction head made as downhole hydraulic mining tool and having ground receiving means and portal crane for ground receiver lifting and lowering arranged in front pontoon part. The ground receiver is lifted and lowered by suction head rotation about axle arranged in central pontoon part. The rig also has sludge line connected to suction head.

EFFECT: possibility of mining work performing at variable development depth.

4 dwg

FIELD: obtaining minerals from underwater, particularly hydro-mechanized devices for concretion production from seabed.

SUBSTANCE: device comprises movable seabed unit with pulp pump and outlet pipe, pressure pipeline with perforated part, basic ship and connection flanges. The perforated part is formed of parallel pipes connected with outlet pipe of the pulp pump and with pressure pipeline by distribution pipes. Number of pipes and pipe diameter are determined from where D1 is diameter of outlet pulp pump pipe, D2 and n - diameter and number of pipes composing perforated part of pressure pipeline.

EFFECT: increased productivity.

5 dwg

FIELD: mining industry, particularly for obtaining minerals from underwater.

SUBSTANCE: plant comprises frame carried by catamaran, drum reels secured to frame at different levels and provided with driving means. Arranged in lower frame base is vessel having chute in which auger is installed. The auger is provided with drive. Frame drums are connected to truck through endless chains to which buckets are hinged. Load cavities of the buckets have orifice arranged from end side thereof and adapted to remove water when buckets move over water surface. Lower bases of the buckets are connected with chains through flexible rods and maintain vertical positions of loads arranged on chains when chain inclination varies. Plant also has compressor connected to float chambers of the buckets by flexible armored tube secured to electric winch rope and by spring. Electric winch is linked with microswitches by electric circuit. Microswitches are adapted to automatically bring electric winch into electric circuit during bucket movement. Catamaran is connected to truck platform through ropes of the winch connected to ship and adapted to lower or lift the truck from ocean bottom. Electric drives of the winches are linked with switch buttons of control panel, which provides remote winch control. Installed in catamaran body are devices to separate concretion mass into fraction and to dehydrate thereof. The devices are made as rotary netted drums with different orifice diameters. The drums are coaxial and spaced apart one from another. Each drum is provided with receiving chamber, drive and fraction outlet. Each fraction outlet is connected to centrifugal means having drive. In accordance to the second embodiment plant has case including three or more frames arranged in staggered order in two rows and centrifugal means. The plant is made as trailed unit and may be unitized with ship. The case is provided with floating pontoon supports. Each pontoon support is connected to compressor and has electromagnetic valve so that the support may immerse the case at proper depth in stormy conditions and emerge thereof after storm termination. Two longitudinal vessels provided with chutes are connected to each frame. Installed in chutes are augers with drives. Shafts with drum reels and drives are secured from both vessel sides at different levels thereof. The drums are provided with endless chains to which buckets are hinged. In accordance with the third embodiment the plant comprises case having three or more frames. The frames are arranged in one or two rows and connected one to another. One longitudinal vessel in secured to each frame. The vessel is provided with chute in which auger with drive is installed. The plant also has case installed on truck, which is mounted on ocean bottom. Conveying wedge-like mechanism is fixedly secured in front of conveyers under truck platform. The wedge-like mechanism is movably installed between drum reels to shift concretion layer from two sides towards bunker bucket loading means.

EFFECT: increased capacity, reliability and durability, improved technical means, workmanship and extended technological capabilities.

3 cl, 16 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: device has watercraft, extracting device with collecting means and pulp-pump, force pipeline, perforated branch pipe with sizes of opening less than minimal size of extracted concretions. Perforated branch pipe is positioned in portion of force pipeline adjacent to extracting device and is provided with flanges, and diameter of perforated branch pipe decreases away from extracting machine. Extracting machine is provided with additional pump with latch, mounted in parallel with pulp-pump of extracting machine, and between perforated branch pipe and force pipeline check valve is positioned.

EFFECT: higher efficiency.

2 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: complex has watercraft, extracting machine with take-in device and pulp-pump, supporting pipeline, perforated branch pipe with sizes of apertures less than minimal size of extracted concretions. Perforated branch pipe is positioned at portion of force pipeline adjacent to extracting machine, and is provided with flanges. Apertures of perforated branch pipe are made in form of multi-drive slit channels along whole length of perforated branch pipe, provided with bandages. Slit channels can be made in form of constant width and directed along generatrix lines of perforated branch pipe, and bandages are positioned in direction perpendicular relatively to perorated branch pipe. Slit channels can be made in form of portions serially positioned behind one another and expanding towards movement of hydraulic mixture. Slit channels can be made of spiral shape, an bandages - in form of longitudinal rods.

EFFECT: higher efficiency.

4 cl, 4 dwg

FIELD: means for organic and chemical fertilizers obtaining, particularly to extract sapropel silt from lake and lagoon bottom and for water ponds cleaning.

SUBSTANCE: device comprises water-craft with executive tool and with extraction tool of suction type, transportation mechanism and optional equipment. Executive tool comprises turbofan, bell-shaped case with serrated lower edge and at least two pipelines mounted in the case and used for feeding compressed air and driving extraction tool. Optional equipment includes hoisting means and seriously connected accumulator vessel, bin, sump, evaporator, disperser, pelletizer, drying chamber, metering device and transportation mechanism.

EFFECT: reduced sapropel mass losses, reduced time of sapropel preparation to use.

13 dwg

FIELD: mining industry.

SUBSTANCE: device has bottom power assembly, connected to base watercraft by force pipeline with conical perforated portion, adjacent to bottom power assembly, conical perforated portion of force pipeline is made of sheet of elastic material and provided with rigid branch pipes with flanges on both ends. Flanges of branch pipes are interconnected by round-link chains placed along flanges perimeter, which are connected to flanges of power assembly and force pipeline branch pipe.

EFFECT: simplified construction, lower costs, higher efficiency.

4 cl, 4 dwg

FIELD: mining industry.

SUBSTANCE: mining combine has extraction means, on which a body is mounted, having at least one first liquid outlet, for supplying liquid to material. Pipeline, through which liquid is fed to first liquid outlet, contains means for measuring flow and/or pressure of liquid in pipeline, for determining, in which of to layers outlet is positioned. Combine can have at least one second liquid outlet, placed in such a way, that first liquid outlet is in lower layer, and second liquid outlet is placed in upper layer. First liquid outlet can have one of multiple first liquid outlets spaced from each other, and second liquid outlet - one of multiple spaced from each other second liquid outlets. Efficiency of liquid flow through multiple spaced first outlets can surpass those of multiple spaced from each other second liquid outlets. Placement of second liquid outlet in separate body cover is possible. First and second liquid outlets can be directed downwardly relatively to direction of mining combine displacement. Method for controlling depth of position of mining combine extraction means includes placing two liquid outlets, interacting with material extraction means, in a material, while second liquid outlet is placed above first liquid outlet, liquid is fed to first and second liquid outlets and flow and/or pressure of liquid is measured. Layer, wherein liquid outlet lies, is detected, and first liquid outlet is placed in lower layer and second liquid outlet is placed in upper layer, to determine depth of position of extraction means relatively to two layers.

EFFECT: higher precision.

2 cl, 9 dwg

FIELD: means for organic and chemical fertilizers obtaining, particularly to extract sapropel silt from lake and lagoon bottom and for water ponds cleaning.

SUBSTANCE: device comprises water-craft with executive tool and with extraction tool of suction type, transportation mechanism and optional equipment. Executive tool comprises turbofan, bell-shaped case with serrated lower edge and at least two pipelines mounted in the case and used for feeding compressed air and driving extraction tool. Optional equipment includes hoisting means and seriously connected accumulator vessel, bin, sump, evaporator, disperser, pelletizer, drying chamber, metering device and transportation mechanism.

EFFECT: reduced sapropel mass losses, reduced time of sapropel preparation to use.

13 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: complex has watercraft, extracting machine with take-in device and pulp-pump, supporting pipeline, perforated branch pipe with sizes of apertures less than minimal size of extracted concretions. Perforated branch pipe is positioned at portion of force pipeline adjacent to extracting machine, and is provided with flanges. Apertures of perforated branch pipe are made in form of multi-drive slit channels along whole length of perforated branch pipe, provided with bandages. Slit channels can be made in form of constant width and directed along generatrix lines of perforated branch pipe, and bandages are positioned in direction perpendicular relatively to perorated branch pipe. Slit channels can be made in form of portions serially positioned behind one another and expanding towards movement of hydraulic mixture. Slit channels can be made of spiral shape, an bandages - in form of longitudinal rods.

EFFECT: higher efficiency.

4 cl, 4 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: device has watercraft, extracting device with collecting means and pulp-pump, force pipeline, perforated branch pipe with sizes of opening less than minimal size of extracted concretions. Perforated branch pipe is positioned in portion of force pipeline adjacent to extracting device and is provided with flanges, and diameter of perforated branch pipe decreases away from extracting machine. Extracting machine is provided with additional pump with latch, mounted in parallel with pulp-pump of extracting machine, and between perforated branch pipe and force pipeline check valve is positioned.

EFFECT: higher efficiency.

2 dwg

FIELD: mining industry, particularly for obtaining minerals from underwater.

SUBSTANCE: plant comprises frame carried by catamaran, drum reels secured to frame at different levels and provided with driving means. Arranged in lower frame base is vessel having chute in which auger is installed. The auger is provided with drive. Frame drums are connected to truck through endless chains to which buckets are hinged. Load cavities of the buckets have orifice arranged from end side thereof and adapted to remove water when buckets move over water surface. Lower bases of the buckets are connected with chains through flexible rods and maintain vertical positions of loads arranged on chains when chain inclination varies. Plant also has compressor connected to float chambers of the buckets by flexible armored tube secured to electric winch rope and by spring. Electric winch is linked with microswitches by electric circuit. Microswitches are adapted to automatically bring electric winch into electric circuit during bucket movement. Catamaran is connected to truck platform through ropes of the winch connected to ship and adapted to lower or lift the truck from ocean bottom. Electric drives of the winches are linked with switch buttons of control panel, which provides remote winch control. Installed in catamaran body are devices to separate concretion mass into fraction and to dehydrate thereof. The devices are made as rotary netted drums with different orifice diameters. The drums are coaxial and spaced apart one from another. Each drum is provided with receiving chamber, drive and fraction outlet. Each fraction outlet is connected to centrifugal means having drive. In accordance to the second embodiment plant has case including three or more frames arranged in staggered order in two rows and centrifugal means. The plant is made as trailed unit and may be unitized with ship. The case is provided with floating pontoon supports. Each pontoon support is connected to compressor and has electromagnetic valve so that the support may immerse the case at proper depth in stormy conditions and emerge thereof after storm termination. Two longitudinal vessels provided with chutes are connected to each frame. Installed in chutes are augers with drives. Shafts with drum reels and drives are secured from both vessel sides at different levels thereof. The drums are provided with endless chains to which buckets are hinged. In accordance with the third embodiment the plant comprises case having three or more frames. The frames are arranged in one or two rows and connected one to another. One longitudinal vessel in secured to each frame. The vessel is provided with chute in which auger with drive is installed. The plant also has case installed on truck, which is mounted on ocean bottom. Conveying wedge-like mechanism is fixedly secured in front of conveyers under truck platform. The wedge-like mechanism is movably installed between drum reels to shift concretion layer from two sides towards bunker bucket loading means.

EFFECT: increased capacity, reliability and durability, improved technical means, workmanship and extended technological capabilities.

3 cl, 16 dwg

FIELD: obtaining minerals from underwater, particularly hydro-mechanized devices for concretion production from seabed.

SUBSTANCE: device comprises movable seabed unit with pulp pump and outlet pipe, pressure pipeline with perforated part, basic ship and connection flanges. The perforated part is formed of parallel pipes connected with outlet pipe of the pulp pump and with pressure pipeline by distribution pipes. Number of pipes and pipe diameter are determined from where D1 is diameter of outlet pulp pump pipe, D2 and n - diameter and number of pipes composing perforated part of pressure pipeline.

EFFECT: increased productivity.

5 dwg

FIELD: rock mining, particularly to develop gravel-sand deposits.

SUBSTANCE: rid comprises body made as U-shaped pontoon and having docking mechanism, which provides connection of similar pontoon sections to maintain floatability thereof in the case of suction head weight increasing. The rig also has suction head made as downhole hydraulic mining tool and having ground receiving means and portal crane for ground receiver lifting and lowering arranged in front pontoon part. The ground receiver is lifted and lowered by suction head rotation about axle arranged in central pontoon part. The rig also has sludge line connected to suction head.

EFFECT: possibility of mining work performing at variable development depth.

4 dwg

FIELD: mining, particularly to produce ore and rock materials, for instance building materials.

SUBSTANCE: mining rig comprises pontoon with suction head having sludge receiving means, as well as crane for sludge receiving means lifting and lowering installed in front pontoon part. Sludge receiving means is lifted and lowered by suction head rotation about axle connected to pontoon. Rig comprises sludge line connected to sludge channel of suction head. The pontoon has U-shaped cross-section and is provided with additional crane arranged in rear part thereof. The suction head is made as downhole hydraulic tool having string composed of two parts in length direction. The parts are pivotally connected one to another. The string is arranged on pontoon so that the parts may be lowered in series. The cranes are portal. The axle is located in rear or front pontoon part.

EFFECT: possibility of mining work performing at variable development depth.

2 dwg

FIELD: methods to develop underwater and flooded ferromanganesian concretion and phosphate shelf concretion deposits, as well as similar flooded and marine deposits mainly including horizontal and flat thin seams located on bed surface.

SUBSTANCE: draghead comprises frame body with upper, lower, side and rear walls, suction pipe of suction dredge, blades secured to intermediate bottom, which may rotate in vertical plane. The draghead is also provided with hydraulic abrasing unit having pressure pipe transversal to upper frame body wall. The pressure pipe is provided with hydraulic heads. The draghead comprises ball-and-socket hinge arranged in upper frame body orifice. Upper horizontal edge of rounded side wall is connected to inner surface of upper wall. Side wall flat part height and rounded part height thereof are related as 1:0.5. Ball-and-socket hinge and rounded part of side frame body have curvature radii in plane view equal to active suction dredge suction radius. Intermediate bottom is installed inside rounded side wall of frame body and may rotate with the use of two hydraulic cylinders about horizontal pin secured to rounded part of side frame body wall.

EFFECT: simplified structure and reduced losses in sludge lines.

7 dwg

Up!