Coating produced on the substrates by baking for cure

FIELD: chemical industry; other industries; production of the polymeric coatings on the substrates by the baking for cure.

SUBSTANCE: the invention is pertaining to the polymeric coatings produced on the substrates by the baking for cure. The technical result of the invention is development of the varnishes for the baking for cure, which are mainly detach the harmless products and make the solid coatings resistant to the action of the dissolvents. The invention presents the coatings produced on the substrates by the baking for cure of the mixture consisting of 1 mass share of styrene copolymer and the allyl alcohol treated with diisocynotams with the contents of the OH-group from 1 up to 10 %; 0.05-1 mass share of the oxalic acid; 0.2-5 mass share of the organic solvents and, if necessary, of pigments and the auxiliary components for the varnishes, at the temperatures from 120°С up to 250°С and durations of the baking for cure from 1 up to 200 minutes. The produced coatings have the high hardness and positive stability to the action of the dissolvents. At that during the baking for cure only the dissolvent and water are separated.

EFFECT: the invention ensures development of the varnishes for the baking for cure, which are mainly detach the harmless products and make the solid coatings resistant to the action of the dissolvents.

1 cl, 5 ex

 

The invention relates are made of polymer coatings, particularly coatings obtained by hot drying.

Known coating obtained by hot drying polyols, which can be crosslinked with amino or blocked isocyanates at elevated temperatures (see (Ullmann''s Encyclopedia of Industrial Chemistry, 5-fifth edition, volume A18, str-418). When this undesirable substances, such as, for example, formaldehyde or blocking means, hatshepsuts.

Therefore, the object of the invention is to develop a hot drying varnishes, which are mainly otscheplaut non-hazardous products, such as water, and which give hard coatings, resistant to solvents.

The problem is solved, we offer the coatings deposited on substrates by hot drying a mixture of

A) 1 weight parts of a copolymer of styrene and allyl alcohol-treated diisocyanate, with a content of Oh-groups from 1 to 10%,

B) 0.05 to 1 weight parts of oxalic acid,

B) 0.2 to 5 parts by weight of organic solvents and

G) if necessary, pigments and auxiliary components for varnishes,

at temperatures between 120°, 250°and duration of hot drying from 1 to 200 minutes

The coating (the coating mixture on the substrate) is performed by coating, squeegee, spray, drenching or dipping. Then the mountains of the tea drying at temperatures between 120° With up to 250°in the presence of air or inert gas lasts from 1 to 100 minutes

Component B) is oxalic acid, which mainly before mixing with other components pre-dissolved in a dipolar aprotic solvent, preferably in N-organic, dimethylacetamide and/or dimethylformamide, and the solution is mostly 10-40% (wt.%).

Components C) are, for example, aromatic hydrocarbons such as toluene, xylene or mixtures of alkyl aromatic hydrocarbons, solvents containing ester group in the molecule, for example butyl acetate, methoxypropylacetate, ethoxyethylacetate or ethyl acetate, solvents with simple ether group in the molecule, such as, for example, dimethyl ether of ethylene glycol, diethyl ether of ethylene glycol, dimethyl ether of diethylene glycol, dioxane or tetrahydrofuran, or dipolar aprotic solvents such as N-organic, dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl-caprolactam, dimethyl sulfone or sulfolane, and dipolar aprotic solvents are primarily used for pre-dissolution of oxalic acid.

The mixing of components a)to G) can in principle occur in any sequence at temperatures below 50° With shear (for example, when mixing). Mainly oxalic acid pre-dissolved in a dipolar aprotic solvent, and this solvent additive to other components can occur at any time.

The mixture of components a)to G) is stable at room temperature for at least two weeks, so you can be stable at storage one-component lacquer. However, the addition of a solution of oxalic acid in a dipolar aprotic solvent may be carried out immediately prior to application.

In addition to oxalic acid may be added other hardeners, such as, for example, resins, blocked isocyanates, or mainly epoxides in quantities from 1 to 20 weight parts per 100 weight parts of a mixture of A)-D).

Coatings according to this invention can be applied at all stable above 160°With the substrates (substrates), such as, for example, metals, glass, high temperature plastics or substrate of minerals.

Coatings according to the invention are distinguished by high hardness and resistance to solvents. During hot drying is separated only solvent and water (due to the esterification of Oh-groups oxalic acid) and any products, such as formaldehyde or blocking means for isocyanates.

POR WHAT MEASURES

Example 1

Mixing 270 g CAC (a copolymer of styrene and allyl alcohol; molecular weight Mn=1600, the content of Oh-groups 6%) with 200 g of IPA (methoxy-propyl)add 6.5 MDI (4,4'-diisocyanato-difenilmetana) in 34 g of N-MP (N-organic) and heated for 4 hours to 120°C.

Mix 100 parts by weight of this mixture with 30 weight parts of a 33%solution of oxalic acid in N-organic.

Example 2

Mix 300 g of CAC (a copolymer of styrene and allyl alcohol) 286 g MPA (methoxypropylacetate) from 15.1 g GDI (hexamethylenediisocyanate) and heated for 4 hours to 120°C.

Mix 100 parts by weight of this mixture with 30 weight parts of a 33%solution of oxalic acid in N-organic.

Example 3

Mix 300 g of CAC (a copolymer of styrene and allyl alcohol) 286 g MPA (methoxypropylacetate) with 20 g IPDI (isophoronediisocyanate) and heated for 4 hours to 120°C.

Mix 100 parts by weight of this mixture with 30 weight parts of a 33%solution of oxalic acid in N-organic.

Example 4

Mix 300 g of CAC (a copolymer of styrene and allyl alcohol) 286 g MPA (methoxypropylacetate) from 17.7 g of bis(4-isocyanatophenyl)methane and heated for 4 hours to 120°C.

Mix 100 parts by weight of this mixture with 30 weight parts of a 33%solution of oxalic acid in N-organic

Mixtures according to examples 1-4 are applied with a thickness of SL is I wet 180 μ m using a doctor blade on a glass plate, exposed to the hot drying at 160°C for 10, 20 and 30 minutes. Obtain the following values of hardness by pendulum device (könig [s]):

Example 1Example 2Example 3Example 4
10 min166172136174
20 min177180166174
30 min180182144177

All coatings are stable when testing for abrasion in methylethylketone (MEK) at 100 double passages.

An example of comparison of:

Heat a mixture of 40 g of hydroxyethylmethacrylate, 40 g of styrene, 20 g of butyl acrylate, 80 g of IPA (methoxypropylacetate) and 0.5 g of azobisisobutyronitrile 24 hours to 65°and 1 hour to 120°C.

Mixed with 54 g of a 33%solution of oxalic acid in N-organic.

Put the hot drying at 160°C for 30 minutes. The film is adhesive and soluble in methyl ethyl ketone (MEK).

Hydroxyl group due to the formation of ester groups is associated with a lacquer resin. This prevents, obviously, the blended mixture.

The coatings obtained on the substrate p is the hot drying a mixture of

A) 1 parts of a copolymer of styrene and allyl alcohol-treated diisocyanate, with a content of Oh-groups from 1 to 10%,

B) 0.05 to 1 parts of oxalic acid,

B) 0.2 to 5 parts of organic solvents and

G) if necessary, pigments and auxiliary components for varnishes,

at temperatures between 120°, 250°and duration of hot drying from 1 to 200 minutes



 

Same patents:

FIELD: polymer materials.

SUBSTANCE: invention relates to moisture-hardenable polyurethane compositions, namely to those containing at least one polyurethane prepolymer with isocyanate groups obtained from at least one polyisocyanate and at least one polyol. In addition to prepolymer, composition further contains at least one polyaldimine prepared from at least one polyamine with primary aliphatic amino groups and at least one aldehyde of general formula: wherein Y1 and Y2, independently from each other, represent alkyl, aryl, or arylalkyl group, which is optionally substituted, may contains heteroatoms and/or unsaturated fragments, or Y1 and Y2 together form carbocyclic or heterocyclic ring, which is composed of 5-8, preferably 6 atoms and optionally contains one or two unsaturated bonds; and R1 represents either linear or branched C11-C30-alkyl chain, optionally with at least one heteroatom, especially with at least one ether oxygen atom, or linear or branched C11-C30-alkyl chain with one or numerous unsaturated bonds, or R1 represents group or in which R2 represents linear, branched, or cyclic hydrocarbon chain with 2-16 carbon atoms, optionally incorporating at least one heteroatom, especially at least one ether oxygen atom, or linear, branched, or cyclic C2-C16-hydrocarbon chain with one or numerous unsaturated bonds; and R3 represents linear, branched, or cyclic hydrocarbon chain with 1-8 carbon atoms. Invention describes methods for preparing such compositions and polyaldimine. Compositions can be used as glues, sealing formulations, coatings, or floorings hardening without unpleasant smell and suitable to seal layers inside buildings or to join structural members in vehicle interiors.

EFFECT: extended assortment of hardenable liquid polymer compositions.

24 cl, 4 tbl, 14 ex

FIELD: building materials.

SUBSTANCE: invention relates to a hardening composition used in building industry. The composition comprising a polymer with two or more thiol groups per a molecule, compound with two or more isocyanate groups per a molecule, carbon black and calcium carbonate involves additionally a filling agent wherein silicic acid or silicate is the main component or organic filling agent wherein ground powdered carbon as the main component. The composition shows satisfactory stability in storing the basic compound and the hardening capacity even after storing the basic compound and, except for, it forms the hardened join with sufficient rupture strength limit, hardness and properties of barrier for gas. The composition comprises a hydrocarbon plasticizer and an organometallic compound preferably that provides highly effective hardening properties in combination with higher mechanical strength and properties of barrier for gas. Proposed hardening composition can be used as sealing material in manufacturing isolating glasses, frames, windows for transportation means, glues and covers.

EFFECT: improved and valuable technical properties of composition.

9 cl, 12 tbl, 11 ex

FIELD: polymer materials.

SUBSTANCE: invention relates to polymer compositions including at least one polyurethane prepolymer A with isocyanate terminal groups obtained from at least one polyisocyanate with at least one polyol A1 and, if necessary, with at least one polyol A2. wherein A1 is linear polyoxyalkylenepolyol with unsaturation degree ,less than 0.04 m-equ/g; A2 is polyol, which is present in amount 0-30%, preferably 0-20%, in particular 0-10% based on total amount A1+A2; and at least one polyaldimine B. Composition is a mixture of polyurethane prepolymer A with polyaldimine B. In absence of moisture, such compositions are stable on storage. When being applied, such compositions are brought into contact with moisture, after which polyaldimines are hydrolyzed into aldehydes and polyamines, and polyamines react with polyurethane prepolymer containing isocyanate groups. Products obtained from such composition possess very wide spectrum of properties, including tensile strength varying within a range from 1 to 20 MPa and ultimate elongation above 1000%. Composition may be used as glue, hermetic, coating, or facing.

EFFECT: expanded possibilities of polyurethanes.

3 cl, 7 tbl, 34 ex

FIELD: composite materials.

SUBSTANCE: in particular, invention relates to employment of polyisocyanates compositions as binders for composites containing lignocellulose fibers such as oriented wood chipboard.

EFFECT: improved performance characteristics regarding detachment of product as compared to conventional polyisocyanates employed for binding lignocellulose material.

11 cl, 7 tbl, 8 ex

FIELD: polymer materials.

SUBSTANCE: invention relates to polyurethane-polyol compositions comprising product of reaction of a polyol and Herbert alcohol, the two containing In average 12 carbon atoms. Preferred polyols are α,β-diols and α,β-diols. Polyurethane-polyol compositions exhibit very low viscosity and are particularly suitable in coating compositions with very low content of volatile organics. Hardened coating obtained from claimed compositions ensure high resistance to cracking and can be applied on various substrates such as metal, plastic, wood, glass, ceramics.

EFFECT: increased strength of coatings on a variety of substrates.

5 cl, 3 tbl

FIELD: coating compositions.

SUBSTANCE: invention relates to composition used for coating applying and comprising polyisocyanate compound, hydroxyl-functional film-forming polymer and nonvolatile branched monoatomic alcohol wherein the aliphatic branched monoatomic alcohol is preferable but long-chain nonvolatile branched monoatomic alcohols are more preferable. This provides preparing compositions for applying coatings that possess the improved indices of fluidity and can be used for preparing coatings with the improved appearance and without the negative effect on other properties. Also, invention relates to the multiple composition fir applying coatings. The multicomponent composition for applying coatings represents the bicomponent composition for applying coatings preferably that comprises the polyisocyanate component in addition to hydroxyl-functional film-forming polymer comprising nonvolatile branched monoatomic alcohol also. Also, invention relates to a method for car finishing comprising applying compositions for applying coating on car and to a method for preparing the multilayer coating.

EFFECT: valuable properties of composition.

30 cl, 1 tbl, 2 ex

FIELD: chemistry of polymers.

SUBSTANCE: invention relates to aromatic polyurethane polyols used as components of priming compositions. Invention describes the priming composition comprising aromatic polyurethane polyol including product of reaction: (a) at least one diol component among number of α,β-diols, α,γ-diols and their mixtures; (b) at least one triisocyanate; (c) at least one diisocyanate wherein at least one isocyanate is aromatic one, and molecular mass or aromatic polyurethane polyol is 3000 Da, not above, and a cross-linking agent also. Prepared aromatic polyurethane polyol shows viscosity value by Brookfield at the level 8260 centipoises, OH-number 192.6 KOH/g and the dispersity (Mn/Mw) at the level 3.0. Priming compositions prepared by using indicated aromatic polyurethane polyol are useful in finishing large means of transportation, for example, trains, trucks, buses and airplanes, in particular, in vehicle body works. Also, invention relates methods for applying priming compositions on support comprising applying indicated compositions, and to a method for finishing car in repairs comprising applying the indicated priming composition.

EFFECT: improved and valuable properties of composition.

11 cl, 5 tbl, 12 ex

FIELD: protective coatings.

SUBSTANCE: invention relates to a method for applying onto wood substrate coating with increased resistance to effects of chemical products. Method comprises following stages: (i) addition, to aqueous polyatomic alcohol suspension, of composition based on isocyanate(s) and anionic surfactant having hydrophilic portion containing anionic group and lipophilic portion containing hydrocarbon radical, isocyanate(s)-based composition containing no more than 30% surfactant bound to isocyanate group, to form aqueous emulsion of isocyanate(s) and surfactant; (ii) applying resulting mixture onto wood surface of substrate; and (iii) aging to complete reaction of isocyanate(s) with polyatomic alcohol required to form polyurethane coating.

EFFECT: increased strength of coating (at a level of 90 units) and acquired resistance to a variety of chemical, cosmetic, and woof products according to corresponding standard.

18 cl, 4 dwg, 5 ex

FIELD: protective coatings.

SUBSTANCE: invention relates to methods for protecting metallic surfaces of geophysical instruments for exploring wells against combined action of generated acoustic field, drilling mud components, and formation fluids causing rapid wear of well instrument body. Gluing of protective polyurethane coating to cleaned and degreased metallic surface is effected by a way wherein glue composition based on triphenylmethanetriisocyanate in organic solvent is preliminarily applied onto surface as a layer with thickness 0.5-5 μm, preferably 1-3 μm, after which applied film is aged for 15-30 min at 100°C or for 12-18 h at 20-25°C and relative air humidity 30 to 98% and then protective coating based on lacquer polyurethane and/or poured polyurethane composition is deposited and hardened by a known method.

EFFECT: improved quality of received acoustic signal.

4 cl, 1 tbl, 3 ex

FIELD: building materials.

SUBSTANCE: invention relates to polyisocyanate compositions used for impregnation of concrete construction surfaces for aims of their anti-corrosive protection, and to a method for concrete impregnating by using the indicated composition. The claimed composition comprises earth-alkali metal salt dissolvable in polyisocyanate taken in the amount 0.1-5 mas. p. p. per 100 mas. p. p. of polyisocyanate. Except for, the composition can comprise additionally a hydrophobic solvent and a hydrophobic plasticizer. The claimed composition provides the deep penetration of impregnation up to 9.5 mm. The composition can be used in impregnation of brick masonry, sandy-cement covering for floors, in reconstruction of reservoirs for liquids storage and ferroconcrete constructions.

EFFECT: improved and valuable properties of composition.

6 cl, 1 tbl, 27 ex

FIELD: chemical industry; other industries; production of the polymeric coatings on the substrates by the baking for cure.

SUBSTANCE: the invention is pertaining to the polymeric coatings produced on the substrates by the baking for cure. The technical result of the invention is development of the varnishes for the baking for cure, which are mainly detach the harmless products and make the solid coatings resistant to the action of the dissolvents. The invention presents the coatings produced on the substrates by the baking for cure of the mixture consisting of 1 mass share of styrene copolymer and the allyl alcohol treated with diisocynotams with the contents of the OH-group from 1 up to 10 %; 0.05-1 mass share of the oxalic acid; 0.2-5 mass share of the organic solvents and, if necessary, of pigments and the auxiliary components for the varnishes, at the temperatures from 120°С up to 250°С and durations of the baking for cure from 1 up to 200 minutes. The produced coatings have the high hardness and positive stability to the action of the dissolvents. At that during the baking for cure only the dissolvent and water are separated.

EFFECT: the invention ensures development of the varnishes for the baking for cure, which are mainly detach the harmless products and make the solid coatings resistant to the action of the dissolvents.

1 cl, 5 ex

FIELD: optical engineering.

SUBSTANCE: invention, in particular, relates to UV solidifying composition based on urethane acrylates and containing 6.0-19.3 wt parts of hydroxyalkylacrylate and 1-5 wt parts of light initiator, said urethane acrylate base being mixture of 30.0-82.0 wt parts of interaction product of poly(oxypropylene glycol), 2,4-tolylenediisocyanate, hydroxypropyl acrylate, and 1,2-propylene glycol [molar ratio (1-2):(2-3):(2-2.1):(0.003-0.33)] with 4.7-60.0 wt parts of interaction product of 2,4-tolylenediisocyanate, hydroxypropyl acrylate, and 1,2-propylene glycol [molar ratio 1:(2.5:(0.004-0.065)]. Fiber light guide consisting of quartz optical fiber enrobed by above-defined composition is further described. Loss of light in light guide is thus lowered to 0.42-0.23 dB/km. Rupture strength is thus increased by 7.0 GPa.

EFFECT: increased rupture strength and reduced light loss.

2 cl, 1 tbl, 8 ex

Resin composition // 2247087

FIELD: building industry, in particular polymer composition for sealing adhesives.

SUBSTANCE: claimed composition contains polyisocyanate oligomer comprising 1.9-8.9 mass % of isocyanate groups, water, polymethylsiloxane, dioctylphtalate, chloroparaffin, glycerol, and inorganic powder. Composition of present invention is useful in manufacturing of floor, roof cladding, etc.

EFFECT: composition if increased flexibility, strength, uniform surface flowing, improved wettability, adhesion, homogeneity, radiation resistance, and increased curing time.

4 ex

FIELD: building materials, in particular polymer composition for sealing adhesive, coats, filling floors, etc.

SUBSTANCE: method includes blending at pH 7.5-13.0 of inorganic powder, water and technological additives: polymethylsiloxane, dioctylphtalate, chloroparaffin, followed by addition of polyisocyanate oligomer comprising 1.9-8.9 mass % of isocyanate groups. Method makes it possible to create fastness mode for carbolinic acid and its involvement in chain-elongation reaction without releasing of carbon dioxide.

EFFECT: composition of increased strength, flexibility and alternated characteristics.

4 ex

FIELD: corrosion prevention technologies.

SUBSTANCE: method includes serial application of layers of polymer compositions to metallic surface, while serial layers of polymer compositions are made with various thermal expansion coefficients. As said polymer composition polyurethane compound is used with special admixtures and filling agent, influencing thermal expansion coefficient of covering layer, and content of said filling agent in each following layer is set less than content of said filling agent in previous layer.

EFFECT: higher efficiency.

2 cl, 9 ex

FIELD: varnish-and-paint industry.

SUBSTANCE: invention relates to polyurethane coatings intended to be applied on a variety of surfaces (metal, wood, etc.). Composition comprises toluene solution of hydroxyl-containing component and toluene solution of polyisocyanate. Hydroxyl-containing component is oligoether obtained by in-melt reaction of tall oil with triethanolamine at 170-200°C and characterized by viscosity at most 10000 mPa·s, acid number at most 5.0 mg KOH/g and hydroxyl number 125-138 mg KOH/g. Oligoether-to-polyisocyanate ratio is 1:1.

EFFECT: enabled preparation of two-component lacquer with elevated light resistance, water resistance, and stability, which is suitable for anticorrosive coatings on metal products.

3 cl, 1 tbl

FIELD: polymer materials.

SUBSTANCE: composition contains 5-95% of alkali-swelled polymer prepared by stepped nucleus/shell-type polymerization and 95-5% of at least one polyurethane. Composition is suitable as priming in priming/transparent layer system, which is characterized by high mechanical properties, high "flop", good brightness, essentially lack of "penetration", and good waterproofness.

EFFECT: reduced coating drying time and number of layers.

8 cl, 3 tbl, 17 ex

FIELD: spray compositions for coating.

SUBSTANCE: the invention is pertaining to a composition used for coating including at least one isocyanate- reactive compound containing: a) at least one thiol group; b) at least one polyisocyanate-functional compound; and c) a catalytic agent containing at least one organometallic compound, in which as a metal is used a metal from groups 3-13 of Mendeleyev's periodic system of elements. The invention is also pertaining to usage of the composition for spray coating in the form of the transparent coating layer, to its use in the form of the transparent coating layer in a multilayer lacquer coating and to its use for a repeated finishing and for refinishing of the large-scale transportation means.

EFFECT: the invention ensures production of transparent coating layers used in multilayer lacquer coatings and refinishing of the large-scale transportation means.

11 cl, 17 ex

Polymer composition // 2263695

FIELD: polymerizing mixtures for making water-repellent and anticorrosive coats.

SUBSTANCE: proposed polymer composition contains polyester resins, styrene, hardening agent-peroxide compounds and accelerating agent, inert substances, gel-type binder, paraffins and poly-urethanes. Proposed composition increases service life of coat due to reduction of effect of aggressive factors of outside medium on characteristics of coat.

EFFECT: increased rate of polymerization without considerable stresses in coat; facilitated procedure of applying coats on base of this composition.

23 cl, 80 ex

FIELD: protective coatings.

SUBSTANCE: invention relates to composition to form coatings with quick-setting surface at ambient temperature for use in re-finishing industry, in manufacture of clear coating, and as primer layer in multilayer coating. Composition contains at least one latent base-type photoactivator and base-catalyzed polymerizable or hardenable organic material including isocyanate-reactive groups bearing at least one thiol group.

EFFECT: enabled preparation of compositions, which can be UV hardened and are characterized by acceptable setting velocity at ambient temperature in locations not easily accessible for UV emission.

15 cl, 11 tbl, 10 ex

FIELD: polymer production.

SUBSTANCE: coating composition comprising at least one compound with at least two isocyanate functional groups; at least one compound reactive to isocyanate and having at least two groups reactive to isocyanate groups, which are selected from mercapto groups, hydroxyl groups and combinations thereof; and cocatalyst consisting of phosphine and Michael acceptor, amount of catalyst constituting from 0.05 to 20% of the weight of dry residue. Invention also describes a method for coating substance with indicated composition as well as coated substrate, and adhesive containing at least one compound with at least two isocyanate functional groups and at least one compound containing at least two above defined groups reactive to isocyanate groups. Moreover, invention discloses employment of composition for finishing of great vehicles and refinishing of motor cars. Composition is characterized by drying time at a level of 20 min, modulus of elasticity 1904, Persose hardness 303, and brightness (85°C) at a level of 100.

EFFECT: expanded coating assortment.

16 cl, 16 tbl, 48 ex

Up!