Oil production stimulation device

FIELD: oil and gas production industry, particularly methods or apparatus for obtaining oil, gas, water and other materials from multizone wells.

SUBSTANCE: device comprises packer with flow blocking means formed as hollow body with orifices located over and under sealing member of the packer. Pipe is arranged inside the body so that the pipe is concentric to body axis. Lower pipe end is connected to the body, upper part thereof cooperates with annular bush over outer pipe surface. Annular bush may move in axial direction and is provided with annular sealing means and with shear pins, which fixes the bush inside the body. After pin cutting annular bush moves downwards and closes body orifices located over sealing packer member to cut-off flow leaving orifices below sealing packer member.

EFFECT: extended water-free oil well operation period, increased oil recovery and reduced oil production costs due to elimination of water lifting charges and prevention of well bore zone contamination.

4 dwg

 

The invention relates to the oil and gas industry and can be used, in particular, to prolong waterless operation of oil wells.

Of the devices known to the flow switch (1)comprising a housing with inlet and outlet nozzles, flow diametral and radial holes, the locking body provided with a cylindrical and conical sections, the drive monitoring channel for the drive performed on the cylindrical section, and the case is equipped on both sides of the cylindrical pipe of smaller diameter placed in them removable seats, and the nozzles are eccentric relative to the housing, which is a through hole perpendicular to the axis of the input (primary) pipe and the axis of which lies in the plane of the axis of the cylindrical pipe, and the flow switch is supplied with the drive shaft with an eccentric sleeve member in kinematic connection with the slide actuator of the locking member.

However, the switch is difficult, it requires a separate mechanical drive. As a prototype made device for stimulation (1), comprising concentrically arranged tubing and outer pipes installed in the production string, two pakiruumi the node from which the upper sliding type, and the bottom contains cross m is PTO and differential funnel with the funnel in the form of elastic plates, installed with overlapping space between the production column and switch the flow of fluid, which is made in the form of a check valve with ball shutter, a saddle with an axial channel, a housing with radial channels and a plug at the bottom, mounting nipple, in which a radial channels located under the seat and the radial channel of the housing.

However, the known device is difficult, requires the presence of two pakiruumi nodes, one of which is movable, is not reliable enough.

The task of creating the proposed device is to simplify the design and reliability in the operation of the switch flows of fluids.

The technical result of the invention is to ensure the reliable disconnect the underlying flooded parts of the reservoir from berneliai saturated reservoir sections.

This technical result is achieved in that the flow switch is made in the form of a hollow casing with holes located above and below the sealing element of the packer, and inside the housing concentric with its axis is the tube that its lower part is connected to the housing, and the upper part of the outer surface cooperates with the annular sleeve, with the possibility of axial movement and provided with a ring of the first seal and shear pins, fixing it in the body, which when moved down, after removing the pins, covers the holes in the housing located above the sealing element of the packer, thus disabling the flow of holes below the packer.

Figure 1 shows the proposed device in the open position (on) and figure 2. in the closed position (off).

The proposed device includes a hollow body 1 with overflow holes 2 and located concentric tube 3, on the upper part of which is slipped over the annular sleeve 4 having an annular seal 5 between the sleeve and the casing 1 and between the sleeve and the pipe 3, as well as shear pins 6, and the entire device is inserted into the packer 7 and mounted on the tubing 8 and is located in the casing 9. In the booster tube 8 in the upper part is made of an inlet box 6 (figure 4).

The device operates as follows. Figure 1 shows the device in the on state. Products from well fed as from the bottom of the perforations through the holes 2, and from the top of the perforations and through the suction box 6 (figure 4) on the tubing 9 on the day surface. After pulling water cone to the lower perforations 4 (figure 3) in the production of water appears and turns off the lower water-saturated part of the reservoir. Using rope techniques is either momentarily creating a pressure impulse in the tubing using a pre-reset valve, for example, in the form of a bulb indicates the impact on the annular sleeve 4 (Fig 1). Sleeve 4 is pushed down, cutting off the pins 6 (1) and moving down, covers the holes 2 for the passage of product from the bottom of the perforations, overriding (disabling) thus the product flow from the lower water-bearing zone of the formation, and then the products come only from the top of the perforations 5 (figure 4) from the upper non-irrigated zones of the reservoir. Water, partially from the lower zone of the reservoir due to gravitational separation of oil, has the ability to flow on the walls of the tubing through the pipe 3 (Fig 1) on the bottom.

Thus, there is the flow is shut off production from the lower zone of the reservoir, which was bodnaras, and the product is extracted only from the upper non-irrigated zones of the formation.

When implementing the proposed device is the main extension anhydrous well operation mode.

Based on the foregoing, the proposed device for intensification of oil production from watering productive layers has a number of advantages with respect to known:

first, the simplicity of the design;

secondly, the safe shutdown of the underlying flooded parts of the reservoir from berneliai saturated reservoir sections.

Sources of information

1. Application for patent of the RF No. 2000105663 from 03.07.2000,

2. RF patent №202375 from 04.03.1991, Ál. E 21 In 43/25.

Device for intensification of oil production, including the packer with the installed deactivation switch flow, characterized in that the deactivation switch flow executed in the form of a hollow casing with holes located above and below the sealing element of the packer, and inside the housing concentric with its axis is the tube that its lower part is connected to the housing, and the upper part of the outer surface cooperates with the annular sleeve, with the possibility of axial movement and provided with o-ring seal and shear pins, locking her in the body, which when moved down, after removing the pins, covers the holes in the housing located above the sealing element of the packer, thus disabling the flow of holes below the sealing element of the packer.



 

Same patents:

FIELD: oil and gas industry, particularly downhole equipment to be installed in oil and gas reservoirs.

SUBSTANCE: device comprises hollow body with discharge channels threadedly connected to flow string. The body is provided with shell having orifices and pressure nut. Spring, valve and replaceable head are arranged in annular gap between the body and the shell. The spring is installed between upper and lower support washers. The valve is located between upper support washer and shell ledge. The replaceable head is secured to the shell by means of pressure nut. Sleeve with orifices is coaxially installed inside the body between body extensions so that the sleeve may be displaced by wire-line equipment tool to misalign or align sleeve and shell orifices with discharge body channels.

EFFECT: provision of fluid flow from underlying reservoir to overlaying one.

2 cl

FIELD: oil field development, particularly obtaining oil from a deposit by flooding.

SUBSTANCE: method involves drilling injection and production wells; injecting liquid in wells and extracting product. Wells are drilled along with local valleys and projections investigating. Natural formation water directions are assigned as water flow direction from projections to valleys. Then formation permeability anisotropies created by above flow are determined. Peripheral and line injection wells are located in correspondence with natural formation water flow direction, namely at outer oil-bearing contour from natural formation water flow entering side. Intracontour well rows are additionally arranged substantially transversally to natural formation water flow direction. Production wells are drilled substantially transversally to natural formation water flow direction.

EFFECT: increased oil output due to improved high-permeable formation injectivity and decreased number of injection wells.

1 ex, 2 dwg

FIELD: oil field development, particularly to obtain oil from a multiple-zone well.

SUBSTANCE: method involves drilling vertical and horizontal wells, injecting displacing agent and recovering product. Production horizontal and vertical wells and/or branched horizontal wells are drilled in zones having lesser average number of permeable intervals and greater reservoir part values and in formation junction zones of field to be developed. Injection wells present in above zone are used for oil production. Some production wells arranged along above zone border are used as injection ones along with previous highly-viscous liquid plug injection into high-porous formations to direct main liquid flow, namely oil and displacing agent, to horizontal wells.

EFFECT: increased oil recovery due to enlarged effective well bore length and due to increased inflow of oil displaceable from zones characterized by increased average number of permeable intervals to zones with high reservoir part values.

1 ex, 2 dwg

FIELD: oil industry.

SUBSTANCE: device has raising pipes column, flow distributor, upper and lower packers, each of which has body and elastic collar. Flow distributor is made in form of sub with longitudinal radial channels. Device has central pipe, connected to lower portion of sub. Channels and pipe connect inter-tubular space above upper packer to well shaft below lower packer. Each packer is provided with drift-bolt and support sleeve, into the latter from which its body enters with possible longitudinal displacement and connected to it by shear elements. Also provided is branch pipe, connected by upper end to supporting sleeve of upper packer, and by lower end - to intermediate pipe or pipes with detachable connection, connecting upper packer to lower one. Branch pipe is made with inner disconnecting ring and above it - with radial channels, connecting inner space of raising pipes through longitudinal channels of sub to well shaft between upper and lower packers. Lower end of central pipe enters disconnecting ring of branch pipe. Also provided is supporting pipe or pipes with filter, connected to supporting sleeve of lower packer.

EFFECT: simplified construction, higher reliability, higher durability.

2 dwg

FIELD: oil industry.

SUBSTANCE: device has body with solid wall in central channel and three rows of radial channels. Moving branch pipe is put on the body with a pin. It interacts with figured groove, placed on the body. Stepped cylinder is connected to the body, which by lower end enters a packer, and by upper end is stopped against a spring. It is mounted between end of cylinder and ring-shaped shelf of moving branch pipe. Dependently on position of moving branch pipe connection of behind-pipe space where pump is positioned, occurs to zone of upper or lower productive bed.

EFFECT: simplified construction, higher efficiency, higher reliability.

2 dwg

FIELD: mining industry.

SUBSTANCE: at least one pipes column is lowered into well with constant or variable diameter with or without plugged end, with at least one packer lowered below upper bed of hydraulic and/or mechanical effect with or without column separator. Below and above packer mounting assemblies are lowered in form of well chamber, or nipples with removable valve for feeding working agent through them respectively into lower and upper beds, mounting packer and pressing it from downwards and/or upwards. Minimal absorption pressure for each bed is determined during pressing. Working agent is pumped from mouth into pipes column hollow at given pressure, directing it into upper and/or lower beds through appropriate detachable valves in mounting assemblies. Total flow of working agent is measured on the surface as well as mouth pressure and/or temperature in pipes column hollow and behind-pipe well space. Face pressure of upper bed is determined as well as pressure in pipes column and behind-column space at depth of detachable valve in mounting assembly above the packer. Flow of working agent pumped into upper bed through detachable well is determined, subtracted from total flow and flow of working agent fed into lower bed is determined. Actual flows of working agent for beds are compared to planned values. In case of differences mouth pressure is changed ad/or detachable valves for one or more beds are extracted from mounting assemblies by rope gears. Their characteristics and/or parameters are determined and altered. After that each detachable valve is mounted again into appropriate mounting assembly by rope gears and pumping of working agent through them into appropriate beds is resumed.

EFFECT: higher efficiency.

25 cl, 11 dwg

FIELD: oil and gas extractive industry.

SUBSTANCE: device has operation columns of upper and lower well zones, placed eccentrically one inside the other in upper zone of well, double airlift column, mounted in upper well zone, and double airlift column, connected to operation well of lower well zone, separation column, mounted coaxially to operation column of upper well zone, and cementation pipe. According to invention, in a well with significant power of non-productive zone it is equipped with additional separating column with cleaning channels for lowering drilling tool therein and drilling well to lower well zone with removal of drilling slurry by double airlift column of upper zone through cleaning channels. Additional separating column is combined coaxially with operation column of lower well zone and is rigidly fixed to separation column.

EFFECT: higher efficiency.

1 dwg, 3 cl

The invention relates to the field of the oil industry and can be used for watering operation of oil wells with multi-layer heterogeneous structure of the productive interval

The invention relates to the oil and gas industry

The invention relates to pumping units for separate operation of several reservoirs

FIELD: oil and gas extractive industry.

SUBSTANCE: device has operation columns of upper and lower well zones, placed eccentrically one inside the other in upper zone of well, double airlift column, mounted in upper well zone, and double airlift column, connected to operation well of lower well zone, separation column, mounted coaxially to operation column of upper well zone, and cementation pipe. According to invention, in a well with significant power of non-productive zone it is equipped with additional separating column with cleaning channels for lowering drilling tool therein and drilling well to lower well zone with removal of drilling slurry by double airlift column of upper zone through cleaning channels. Additional separating column is combined coaxially with operation column of lower well zone and is rigidly fixed to separation column.

EFFECT: higher efficiency.

1 dwg, 3 cl

FIELD: mining industry.

SUBSTANCE: at least one pipes column is lowered into well with constant or variable diameter with or without plugged end, with at least one packer lowered below upper bed of hydraulic and/or mechanical effect with or without column separator. Below and above packer mounting assemblies are lowered in form of well chamber, or nipples with removable valve for feeding working agent through them respectively into lower and upper beds, mounting packer and pressing it from downwards and/or upwards. Minimal absorption pressure for each bed is determined during pressing. Working agent is pumped from mouth into pipes column hollow at given pressure, directing it into upper and/or lower beds through appropriate detachable valves in mounting assemblies. Total flow of working agent is measured on the surface as well as mouth pressure and/or temperature in pipes column hollow and behind-pipe well space. Face pressure of upper bed is determined as well as pressure in pipes column and behind-column space at depth of detachable valve in mounting assembly above the packer. Flow of working agent pumped into upper bed through detachable well is determined, subtracted from total flow and flow of working agent fed into lower bed is determined. Actual flows of working agent for beds are compared to planned values. In case of differences mouth pressure is changed ad/or detachable valves for one or more beds are extracted from mounting assemblies by rope gears. Their characteristics and/or parameters are determined and altered. After that each detachable valve is mounted again into appropriate mounting assembly by rope gears and pumping of working agent through them into appropriate beds is resumed.

EFFECT: higher efficiency.

25 cl, 11 dwg

FIELD: oil industry.

SUBSTANCE: device has body with solid wall in central channel and three rows of radial channels. Moving branch pipe is put on the body with a pin. It interacts with figured groove, placed on the body. Stepped cylinder is connected to the body, which by lower end enters a packer, and by upper end is stopped against a spring. It is mounted between end of cylinder and ring-shaped shelf of moving branch pipe. Dependently on position of moving branch pipe connection of behind-pipe space where pump is positioned, occurs to zone of upper or lower productive bed.

EFFECT: simplified construction, higher efficiency, higher reliability.

2 dwg

FIELD: oil industry.

SUBSTANCE: device has raising pipes column, flow distributor, upper and lower packers, each of which has body and elastic collar. Flow distributor is made in form of sub with longitudinal radial channels. Device has central pipe, connected to lower portion of sub. Channels and pipe connect inter-tubular space above upper packer to well shaft below lower packer. Each packer is provided with drift-bolt and support sleeve, into the latter from which its body enters with possible longitudinal displacement and connected to it by shear elements. Also provided is branch pipe, connected by upper end to supporting sleeve of upper packer, and by lower end - to intermediate pipe or pipes with detachable connection, connecting upper packer to lower one. Branch pipe is made with inner disconnecting ring and above it - with radial channels, connecting inner space of raising pipes through longitudinal channels of sub to well shaft between upper and lower packers. Lower end of central pipe enters disconnecting ring of branch pipe. Also provided is supporting pipe or pipes with filter, connected to supporting sleeve of lower packer.

EFFECT: simplified construction, higher reliability, higher durability.

2 dwg

FIELD: oil field development, particularly to obtain oil from a multiple-zone well.

SUBSTANCE: method involves drilling vertical and horizontal wells, injecting displacing agent and recovering product. Production horizontal and vertical wells and/or branched horizontal wells are drilled in zones having lesser average number of permeable intervals and greater reservoir part values and in formation junction zones of field to be developed. Injection wells present in above zone are used for oil production. Some production wells arranged along above zone border are used as injection ones along with previous highly-viscous liquid plug injection into high-porous formations to direct main liquid flow, namely oil and displacing agent, to horizontal wells.

EFFECT: increased oil recovery due to enlarged effective well bore length and due to increased inflow of oil displaceable from zones characterized by increased average number of permeable intervals to zones with high reservoir part values.

1 ex, 2 dwg

FIELD: oil field development, particularly obtaining oil from a deposit by flooding.

SUBSTANCE: method involves drilling injection and production wells; injecting liquid in wells and extracting product. Wells are drilled along with local valleys and projections investigating. Natural formation water directions are assigned as water flow direction from projections to valleys. Then formation permeability anisotropies created by above flow are determined. Peripheral and line injection wells are located in correspondence with natural formation water flow direction, namely at outer oil-bearing contour from natural formation water flow entering side. Intracontour well rows are additionally arranged substantially transversally to natural formation water flow direction. Production wells are drilled substantially transversally to natural formation water flow direction.

EFFECT: increased oil output due to improved high-permeable formation injectivity and decreased number of injection wells.

1 ex, 2 dwg

FIELD: oil and gas industry, particularly downhole equipment to be installed in oil and gas reservoirs.

SUBSTANCE: device comprises hollow body with discharge channels threadedly connected to flow string. The body is provided with shell having orifices and pressure nut. Spring, valve and replaceable head are arranged in annular gap between the body and the shell. The spring is installed between upper and lower support washers. The valve is located between upper support washer and shell ledge. The replaceable head is secured to the shell by means of pressure nut. Sleeve with orifices is coaxially installed inside the body between body extensions so that the sleeve may be displaced by wire-line equipment tool to misalign or align sleeve and shell orifices with discharge body channels.

EFFECT: provision of fluid flow from underlying reservoir to overlaying one.

2 cl

FIELD: oil and gas production industry, particularly methods or apparatus for obtaining oil, gas, water and other materials from multizone wells.

SUBSTANCE: device comprises packer with flow blocking means formed as hollow body with orifices located over and under sealing member of the packer. Pipe is arranged inside the body so that the pipe is concentric to body axis. Lower pipe end is connected to the body, upper part thereof cooperates with annular bush over outer pipe surface. Annular bush may move in axial direction and is provided with annular sealing means and with shear pins, which fixes the bush inside the body. After pin cutting annular bush moves downwards and closes body orifices located over sealing packer member to cut-off flow leaving orifices below sealing packer member.

EFFECT: extended water-free oil well operation period, increased oil recovery and reduced oil production costs due to elimination of water lifting charges and prevention of well bore zone contamination.

4 dwg

FIELD: oil industry.

SUBSTANCE: method comprises setting the jet pump into the well. The housing of the pump is provided with the central nozzle, openings for inflow of fluid, and radial passages. The openings for inflow of fluid are shut off by means of valving members. The jet pump is mounted between the top and bottom oil-bearing beds.

EFFECT: enhanced efficiency.

2 dwg

FIELD: oil production, particularly to produce watered oil and produced water utilization.

SUBSTANCE: pumping plant comprises pumps, which may be serially installed in well and provided with inlet and outlet means, drives and packer. Packer may be located inside well between beds. One bed is filled with oil-water mixture, another bed, namely lower one, is adapted for water receiving. Plant comprises screw pumps with drives installed on surface and polished shaft with gasket to connect worm shaft of upper pump with that of lower one. Lower screw pump has inlet means with radial orifices to receive water phase separated from oil-water mixture, as well as with slots. Lower pump comprises case, which defines channel for water injection into lower bed via above channel and through slots made in inlet means of lower pump during the same auger shaft rotation.

EFFECT: increased efficiency due to surface-driven screw pump usage.

3 dwg

Up!