Lower head of downhole hydraulic mining tool

FIELD: mineral field development by hydraulic mining methods, as well as borehole drilling and all-purpose underground cavities creation.

SUBSTANCE: device comprises connection pipe for pressure water. Connection pipe of slurry pipeline has conical constricted section, wear-resistant insert made as spaced rings of wear-resistant material installed downstream from the conical constricted section in slurry flow direction, and conical widening section arranged downstream from the rings. Connection pipe of slurry pipeline has orifices made in area of ring location and adapted to supply pressure water into connection pipe of slurry pipeline via gaps defined between the rings. Hydraulic elevator is arranged at end of connection pipe for pressure water. Connection pipe for pressure water and hydraulic elevator may have water-jet nozzles. Gaps between rings of wear-resistant insert are created due to ring end roughness. As pressure water is supplied part of flow moving via annular gap passes through annular hydraulic elevator and enters into connection pipe of slurry pipeline to create ascending flow. Due to created vacuum washed mineral is sucked into connection pipe of slurry pipeline in slurry form and then transported to surface.

EFFECT: reduced wear of inlet connection pipe part.

3 cl, 1 dwg

 

The invention relates to the mining industry and can be used in the development of mineral deposits methods for downhole application of hydraulic technology, as well as during drilling and the creation of underground cavities for various purposes. The preferred field of application - jetting units, in which a portion of the stream of pressurized water is supplied to power the hydraulic ejector, and intended for field development, in which minerals are characterized by high abrasion, such as deposits of quartz sand.

Known lower end of the downhole hydroporinae projectile containing a nozzle for flow of pressure water jetting head, placed in it the connection of the slurry line from the suction inlet and the nozzle of the hydraulic ejector (USSR Author's certificate No. 1320419, CL E 21 45/00, publ. 1987).

The disadvantage of this device is the rapid wear of the inlet portion of the nozzle slurry line when it is used for erosion and transportation of minerals characterized by high abrasiveness.

The closest in technical essence and the achieved result is the lower end of the downhole hydroporinae projectile, comprising a pipe for supplying pressurized water placed in it a connection of the slurry line and it is litsevoy the hydraulic ejector with confuser, the cone and the mixing chamber, is made in the front part of the nozzle slurry line (Patent RU №2060393, CL. E 21 45/00, publ. 1996).

The disadvantage of this device is also rapid wear of the inlet portion of the nozzle slurry line when it is used for erosion and transportation of minerals characterized by high abrasiveness.

The problem to which this invention is directed is to improve the performance of downhole gidrodobychnyh units by increasing the turnaround periods.

The technical result that can be obtained by carrying out the invention is to reduce wear of the inlet portion of the nozzle slurry line borehole mining shells, equipped pulp-raising devices made in the form of an annular hydraulic ejector.

This technical result is achieved by the fact that in the known lower end of the downhole hydroporinae projectile, comprising a pipe for supplying pressurized water placed in it a connection of the slurry line and the o-ring hydraulic ejector with confuser, the diffuser and the mixing chamber, is made in the front part of the nozzle slurry line, according to the invention the mixing chamber annular hydraulic ejector provided with a wear-resistant insert, made in the form of rings containing wear-resistant material installed with atrami interconnected between the confuser and diffuser with this in place rings in nozzle slurry line with holes for supplying pressurized water to the nozzle slurry line through the gaps between the rings.

In the stated set includes all the essential features characterizing the invention and obtain a technical result, in all cases to which the requested amount of legal protection.

In the particular case of the invention is characterized by the fact that the gaps between the rings wear-resistant inserts are formed due to the roughness of their end faces.

And that pipe for supplying pressurized water has a side and/or end-jetting nozzle.

The lower end of the downhole hydroporinae projectile is illustrated by a drawing, which presents its longitudinal section.

The lower end of borehole mining shell consists of a tube 1 for supplying pressurized water, which can be mounted side 2 and/or face (not shown) jetting nozzles for washing rocks and education of the pulp. Inside tube 1 coaxially with a gap 3 is posted pipe slurry line 4. At the end of the pipe 1 for supplying pressurized water posted by annular hydraulic ejector 5. End hydromonitor nozzles for drilling can be mounted in the end of the annular hydraulic ejector 5.

p> The confuser 6 ring hydraulic ejector 5 is located at the entrance pipe of the slurry line 4 and is made, for example, in the form of a sleeve with an outer cylinder and an inner conical surfaces. Thus the outer diameter of the sleeve is equal to the inner diameter of the pipe slurry line 4. Most (input) diameter confuser 6 equal to the inner diameter of the pipe slurry line 4. Lower (outlet) diameter confuser 6 equal to the inner diameter of the wear-resistant insert.

For confuser 6 in the mixing chamber annular hydraulic ejector 5 is equipped with wear-resistant insert. Wear-resistant insert 7 made in the form of rings 8 (washers)containing wear-resistant material. Depending on the size and strength of the transported mineral particles as wear-resistant material can be used: wear-resistant rubber, microporous oxide, durable (austenitic) steel, wear-resistant cast iron. This ring can be made of these materials as a whole and contain a wear-resistant material in impregnowana. You can also use wear-resistant coatings applied to the inner surface of the ring 8 made from non-durable materials.

The length of the wear-resistant inserts 7 should provide protection section of the nozzle slurry line 4 subject to the most severe wear as a result is their high speeds of movement of the material on this site. The outer diameter of the ring 8 is equal to the inner diameter of the pipe slurry line 4, and the inner diameter should provide optimal flow section and installed in the experimental studies. The end faces of the rings 8 are performed with irregularities (rough), so that when the coupling between them form a gap for feeding pressurized water.

For wear resistant insert 7 is placed a conical extension 9 (diffuser)made in the form of a sleeve with an outer cylinder and an inner conical surfaces. Thus the outer diameter of the sleeve is equal to the inner diameter of the pipe slurry line 4. More (output) the diameter of the conical extension equal to the inner diameter of the pipe slurry line 4. Less (input) diameter of the conical extension equal to the inner diameter of the rings 8 wear-resistant inserts 7.

The section of pipe slurry line 4, protected by a wear resistant insert 7 has holes 10 made in the walls for supplying pressurized water to the nozzle slurry line 4 through the gaps between the rings 8 wear-resistant inserts 7. The diameter, number and arrangement of holes 10 can be installed estimated or experimentally and should ensure the creation of the water jacket between the inner surface of the wear-resistant inserts 7 and the flow of pulp

To use lower headroom jetting units engaged in the drilling of wells at the end of the hydraulic ejector can be installed jetting nozzles. If the device run without end jetting nozzles, i.e. the device is not used for drilling wells, to protect the inlet from the boulders it may be provided with a fence 11.

The device operates as follows.

When applying water pressure in the pipe 1, it passes through the annular space 3, then passes through the annular hydraulic ejector and into the inlet of the slurry line 4, forming an upward flow. Due to ejection effect blurred minerals in the form of slurry is sucked into the inlet of the slurry line 4 and the upward flow is transported to the surface.

If the bottom end has a jet nozzle, the flow pressure of water supplied to a jet nozzle 2 and produces erosion of the rocks with the formation of the pulp. The other part flows through the annular hydraulic ejector and into the inlet of the slurry line 4, forming an upward flow. Due to ejection effect blurred minerals in the form of slurry is sucked into the inlet of the slurry line 4 and is transported to the surface.

Blurred minerals characterized by high abrasion, passing on what trubku the slurry line 4, protected by a wear resistant insert, doesn't wear its walls, thereby increasing the performance of the downhole jetting units by increasing the turnaround periods. In addition, pressurized water entering through the gaps between the rings 8 wear-resistant inserts 7, forms an additional protective layer on this part of the slurry line in the form of a water jacket.

Additional technical result that can be obtained by carrying out the invention consists in attire grains of minerals from impurities, such as removing films of iron oxides with grains of quartz sand. Additional technical result due to the abrasive properties of some materials used as wear-resistant material, such as oxide.

1. The lower end of the downhole hydroporinae projectile, comprising a pipe for supplying pressurized water placed in it a connection of the slurry line and the o-ring hydraulic ejector with confuser, the diffuser and the mixing chamber, is made in the front part of the nozzle slurry line, characterized in that the mixing chamber annular hydraulic ejector provided with a wear-resistant insert, made in the form of rings containing wear-resistant material installed with gaps between between a confuser and diffuser, while m is the degree of occupancy of the rings in the pipe slurry line with holes for supplying pressurized water to the nozzle slurry line through the gaps between the rings.

2. The lower head according to claim 1, characterized in that the gaps between the rings wear-resistant inserts are formed due to the roughness of their end faces.

3. The lower head according to claim 1, characterized in that the nozzle for supplying pressurized water has a side and/or end-jetting nozzle.



 

Same patents:

FIELD: mining industry, particularly to produce loose, soft or single-grained minerals through production boreholes.

SUBSTANCE: method involves installing drilling rig in one point of area to be treated; drilling inclined production boreholes at an angle to horizon; installing pipes in the borehole; assembling hydraulic production equipment and lifting mineral to surface. Drilling rig is installed in one point to be treated so that the drilling rig may perform azimuth and angular rotation in vertical plane. Several production boreholes extending at different angles to horizon in common vertical plane are drilled by the drilling rig. The first borehole has minimal angle defined by maximal possible length of borehole, which can be drilled by the drilling rig. The next borehole has maximal angle defined by rock deformation area to prevent rock deformation on surface and in mineral production equipment installation area. Remainder boreholes are drilled in the same vertical plane at α3, α4, ... απ angles to horizon, which maximizes efficiency of mineral production. Similar inclined boreholes are drilled in other vertical planes by rotating the drilling rig in azimuth direction through γ1, γ2 ... γπ angles. Mineral is produced simultaneously or sequentially from borehole groups to provide smooth lowering of overlaying rock.

EFFECT: increased mineral removing fullness with the use of single equipment unit, reduced amount of construction-and-assembling operations, possibility to perform operations in any season, reduced costs of operation performing in cold season, increased safety for staff and equipment.

2 dwg, 2 ex

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with rotary device of hydraulic monitor plant through hydraulic system, wherein vertical rod of hydraulic monitor plant is provided with rigid fixers brought into cooperation with slots of additional vertical rod. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted through transformers to wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Sensors which record dynamic wash zone properties and sensors which record dynamic properties of pre-disintegration zone are installed on the additional rod included in hydraulic monitor. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed prior transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with executive members of rotary device made in hydraulic monitor plant through hydraulic system. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted by means of wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Wash zone oscillators and sensors which record dynamic wash zone properties are installed on upper telescopic bar of T-shaped lever pivotally secured to additional rod of hydraulic monitor plant and brought into cooperation with drive through L-shaped link for lever rotation. Pre-disintegration zone oscillator and sensors which record dynamic properties of pre-disintegration zone are installed on telescopic rotary device hinged with airlift rod. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: transport building, particularly to perform mining operations in far north areas.

SUBSTANCE: method involves cutting ground in pit and supplying sludge to concentration plant; separating the sludge into concentrated and lean sludge fractions in the concentrated plant; forming deposit vessel in water pool, filling the vessel with lean fraction, wherein the vessel is isolated from concentrated ground deposit by partition dam; developing concentrated ground with jet drag heads; forming and supplying strong pulp to washing in zone; washing in ground in layers, wherein upper layer consists of concentrated draining ground, or forming above ground structure by freezing the ground in layers in winter period. To implement above method water pool bottom is deepened to design level, one or several head parts of drag head are installed on deepened water pool bottom, the head parts are covered with concentrated ground and ground deposit is formed below ice boundary of water pool. Ground is extracted from above deposit from under ice through flexible sludge pipelines during extended working season.

EFFECT: reduced unit costs for strong sludge forming and elimination of costs necessary to maintain lane above underwater ground deposit during extended working season.

2 cl, 2 dwg

FIELD: mineral extraction method with the use of underground hydraulic ore cutting and extraction of crushed ore through boreholes.

SUBSTANCE: method involves cutting deposit over the deposit area into panels (sections or blocks); drilling boreholes for extracting pulp; arranging standpipe for pressure working medium supply and standpipe for conveyance medium supply; forming working excavation and filling thereof with stowing after development; performing lower deposit undercutting to provide ore massif permeability for working medium by serial shock blasting borehole and then camouflet explosive charges; forming camouflet cavities by blasting borehole charges and intermediate camouflets; performing successive impregnating of crushed massif with medium dissolving borehole minerals (for instance with acid or alkali solution); arranging containers with the dissolving medium above camouflet explosive charges before blasting thereof; separating them from explosive charges and from upper borehole part by stowing; supplying working medium through pressure working medium pipeline without creating overpressure in the medium; increasing pressure at outlet with hydraulic intensifier; regulating ratio between solid and liquid components of pulp risen by means of airlift plant by supplying compressed air through actuator arranged under pulp intake means.

EFFECT: increased fullness of mineral extraction.

3 cl, 6 dwg

FIELD: mining industry.

SUBSTANCE: method includes opening productive bed by product slanting well, casing the well by pipes column, mounting well block with concentrically positioned pipes columns, lift and hydro-monitoring headpiece, hydro-monitoring erosion of bed and raising formed mixture of rocks by said lift to surface. According to method, opening of productive bed is performed using product slanting well and its casing is performed by displacing outer pipes column of well block along well axis and concurrent rotation of inner pipes column, hydro-monitoring headpiece is inserted inside outer column of pipes of well block, and during erosion of bed it is pulled out of outer pipes column of well block. Device for realization of said method is made in form of well block, including as common parts concentrically placed pipes column, outermost of which is casing column of well, and inner one is provided with headpiece with lift, hydro-monitoring headpiece and pressurizing element, and portal in form of two-passage swivel for feeding water and draining pulp. Pressurizing element is mounted at end piece above hydro-monitoring headpiece and is made in form of cylindrical shelf. To limit movement of inner pipes column relatively to outer pipes column, at lower end of outer pipes column a bushing is mounted with possible interaction with cylindrical shelf, outer diameter of which exceeds inner diameter of bushing.

EFFECT: higher efficiency, lower costs, lower laboriousness.

2 cl, 4 dwg

The invention relates to mining and can be used for mining gidrodobychnyh well at a depth of up to a thousand meters or more

The invention relates to methods for development of deposits of solid minerals by HBM and may find application in the development of inclined seams after a failover shallow their wings open way

The invention relates to variants of the method of hydraulic borehole mining of minerals, and may find application in the development of inclined layers of low and medium power after working eglobalhealth their wings open way

The invention relates to mining and can be used in the development of deep-seated deposits of minerals by underground mining

FIELD: mining industry.

SUBSTANCE: method includes opening productive bed by product slanting well, casing the well by pipes column, mounting well block with concentrically positioned pipes columns, lift and hydro-monitoring headpiece, hydro-monitoring erosion of bed and raising formed mixture of rocks by said lift to surface. According to method, opening of productive bed is performed using product slanting well and its casing is performed by displacing outer pipes column of well block along well axis and concurrent rotation of inner pipes column, hydro-monitoring headpiece is inserted inside outer column of pipes of well block, and during erosion of bed it is pulled out of outer pipes column of well block. Device for realization of said method is made in form of well block, including as common parts concentrically placed pipes column, outermost of which is casing column of well, and inner one is provided with headpiece with lift, hydro-monitoring headpiece and pressurizing element, and portal in form of two-passage swivel for feeding water and draining pulp. Pressurizing element is mounted at end piece above hydro-monitoring headpiece and is made in form of cylindrical shelf. To limit movement of inner pipes column relatively to outer pipes column, at lower end of outer pipes column a bushing is mounted with possible interaction with cylindrical shelf, outer diameter of which exceeds inner diameter of bushing.

EFFECT: higher efficiency, lower costs, lower laboriousness.

2 cl, 4 dwg

FIELD: mineral extraction method with the use of underground hydraulic ore cutting and extraction of crushed ore through boreholes.

SUBSTANCE: method involves cutting deposit over the deposit area into panels (sections or blocks); drilling boreholes for extracting pulp; arranging standpipe for pressure working medium supply and standpipe for conveyance medium supply; forming working excavation and filling thereof with stowing after development; performing lower deposit undercutting to provide ore massif permeability for working medium by serial shock blasting borehole and then camouflet explosive charges; forming camouflet cavities by blasting borehole charges and intermediate camouflets; performing successive impregnating of crushed massif with medium dissolving borehole minerals (for instance with acid or alkali solution); arranging containers with the dissolving medium above camouflet explosive charges before blasting thereof; separating them from explosive charges and from upper borehole part by stowing; supplying working medium through pressure working medium pipeline without creating overpressure in the medium; increasing pressure at outlet with hydraulic intensifier; regulating ratio between solid and liquid components of pulp risen by means of airlift plant by supplying compressed air through actuator arranged under pulp intake means.

EFFECT: increased fullness of mineral extraction.

3 cl, 6 dwg

FIELD: transport building, particularly to perform mining operations in far north areas.

SUBSTANCE: method involves cutting ground in pit and supplying sludge to concentration plant; separating the sludge into concentrated and lean sludge fractions in the concentrated plant; forming deposit vessel in water pool, filling the vessel with lean fraction, wherein the vessel is isolated from concentrated ground deposit by partition dam; developing concentrated ground with jet drag heads; forming and supplying strong pulp to washing in zone; washing in ground in layers, wherein upper layer consists of concentrated draining ground, or forming above ground structure by freezing the ground in layers in winter period. To implement above method water pool bottom is deepened to design level, one or several head parts of drag head are installed on deepened water pool bottom, the head parts are covered with concentrated ground and ground deposit is formed below ice boundary of water pool. Ground is extracted from above deposit from under ice through flexible sludge pipelines during extended working season.

EFFECT: reduced unit costs for strong sludge forming and elimination of costs necessary to maintain lane above underwater ground deposit during extended working season.

2 cl, 2 dwg

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with executive members of rotary device made in hydraulic monitor plant through hydraulic system. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted by means of wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Wash zone oscillators and sensors which record dynamic wash zone properties are installed on upper telescopic bar of T-shaped lever pivotally secured to additional rod of hydraulic monitor plant and brought into cooperation with drive through L-shaped link for lever rotation. Pre-disintegration zone oscillator and sensors which record dynamic properties of pre-disintegration zone are installed on telescopic rotary device hinged with airlift rod. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with rotary device of hydraulic monitor plant through hydraulic system, wherein vertical rod of hydraulic monitor plant is provided with rigid fixers brought into cooperation with slots of additional vertical rod. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted through transformers to wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Sensors which record dynamic wash zone properties and sensors which record dynamic properties of pre-disintegration zone are installed on the additional rod included in hydraulic monitor. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed prior transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: mining industry, particularly to produce loose, soft or single-grained minerals through production boreholes.

SUBSTANCE: method involves installing drilling rig in one point of area to be treated; drilling inclined production boreholes at an angle to horizon; installing pipes in the borehole; assembling hydraulic production equipment and lifting mineral to surface. Drilling rig is installed in one point to be treated so that the drilling rig may perform azimuth and angular rotation in vertical plane. Several production boreholes extending at different angles to horizon in common vertical plane are drilled by the drilling rig. The first borehole has minimal angle defined by maximal possible length of borehole, which can be drilled by the drilling rig. The next borehole has maximal angle defined by rock deformation area to prevent rock deformation on surface and in mineral production equipment installation area. Remainder boreholes are drilled in the same vertical plane at α3, α4, ... απ angles to horizon, which maximizes efficiency of mineral production. Similar inclined boreholes are drilled in other vertical planes by rotating the drilling rig in azimuth direction through γ1, γ2 ... γπ angles. Mineral is produced simultaneously or sequentially from borehole groups to provide smooth lowering of overlaying rock.

EFFECT: increased mineral removing fullness with the use of single equipment unit, reduced amount of construction-and-assembling operations, possibility to perform operations in any season, reduced costs of operation performing in cold season, increased safety for staff and equipment.

2 dwg, 2 ex

FIELD: mineral field development by hydraulic mining methods, as well as borehole drilling and all-purpose underground cavities creation.

SUBSTANCE: device comprises connection pipe for pressure water. Connection pipe of slurry pipeline has conical constricted section, wear-resistant insert made as spaced rings of wear-resistant material installed downstream from the conical constricted section in slurry flow direction, and conical widening section arranged downstream from the rings. Connection pipe of slurry pipeline has orifices made in area of ring location and adapted to supply pressure water into connection pipe of slurry pipeline via gaps defined between the rings. Hydraulic elevator is arranged at end of connection pipe for pressure water. Connection pipe for pressure water and hydraulic elevator may have water-jet nozzles. Gaps between rings of wear-resistant insert are created due to ring end roughness. As pressure water is supplied part of flow moving via annular gap passes through annular hydraulic elevator and enters into connection pipe of slurry pipeline to create ascending flow. Due to created vacuum washed mineral is sucked into connection pipe of slurry pipeline in slurry form and then transported to surface.

EFFECT: reduced wear of inlet connection pipe part.

3 cl, 1 dwg

Hydraulic monitor // 2272143

FIELD: methods of hydraulic mining, particularly hydraulic monitors for rock breakage with water jets.

SUBSTANCE: hydraulic monitor comprises base, hinge assembly and barrel with nozzle. Through pipe extending along barrel axis is installed in barrel channel and supported by centrators. The first pipe end is communicated with atmosphere, another one is located in the nozzle. Pipe-nozzle diameter ratio is 0.50-0.57. The pipe serves as ejection means. As high pressure water passes through the nozzle streamlined air bubble is created at pipe outlet due to air ejection. Air bubble pressure is less than atmospheric pressure. This provides jet compression at nozzle outlet and as a result increases jet range. Abrasive and chemical materials may be used with water jet to improve rock breakage efficiency.

EFFECT: increased efficiency.

1 dwg

FIELD: mining, particularly to develop gold-bearing rock with high clay content.

SUBSTANCE: method involves loosening rock by applying mechanical action to the rock along with periodically initiating elastic vibrations in ultrasonic-frequency band with constant frequency in clay-sand rock - water system, wherein the elastic vibrations are initiated under constant outer pressure and power for different time periods; determining optimal action application time to provide stable clay particle precipitation in clay-sand rock - water system having constant volume during previously choosing controllable particle dimension range; determining conditional transformation coefficients from mathematical expression; making plot of conditional transformation coefficient change as a function of time; determining increase of controllable initial specific surface of particles to be loosened and halving ultrasound power when controllable initial specific surface of particles to be loosened is increased by an order.

EFFECT: reduced specific power consumption.

6 dwg

FIELD: geotechnology, particularly bore mining in wide range of mining and geological conditions.

SUBSTANCE: method involves drilling bore extending for the full thickness of underground mineral formation; cutting the underground mineral formation in chamber coaxial to the bore with the use of water-jet devices. Before hydraulic formation cutting rock massif is moistened by supplying pressurized water in bore for a time period enough to expand moistened zone for necessary distance, wherein water pressure is less than pressure of hydraulic formation cutting. After formation moistening water-jet device is lowered in the bore to cut mineral in moistened zone adjoining the bore. After that formation moistening and cutting operations are repeated to create chamber having predetermined dimensions.

EFFECT: reduced power inputs for hydraulic rock cutting.

2 dwg

Up!