Slope consolidation method

FIELD: building, particularly to erect ground structures, namely to consolidate slopes, to reinforce banks of motor roads and railroads, dams, irrigation channels and river banks.

SUBSTANCE: method for slope reinforcing with members arranged in slope body involves preparing ground surface by terracing disturbed layers thereof in accordance with geological structure thereof along with substituting ground in unstable areas for draining material; compacting the draining material and reinforcing thereof with grids of polymeric material having openings of not more than 1 m; arranging zinc-coated steel mesh formed by two-for-one twisting method and having hexahedral openings; connecting the steel mesh with above grids; dividing prepared slope surface into sections with pitch not exceeding 3 m by installing the partitions of zinc-coated steel mesh formed by two-for-one twisting method having height of not more than 0.3 m; scattering loamy ground to form loamy layer having 0.1 m thickness; compacting the loamy ground; scattering vegetable soil; laying bio-textile on vegetable soil and planting greenery.

EFFECT: increased flexibility of protective coating and improved environment protection.

2 dwg

 

The invention relates to the construction of earth structures and can be used to reinforce slopes, slopes, subgrade of roads and Railways, dams, drainage channels and banks of waterways.

Closest to the invention is a method for stabilization of slopes, including the reinforcement elements located in the body of the slope (patent of Russia №2064998, CL E 02 D 17/20, 1996).

However, the known technical solution does not have sufficient strength and flexibility in the conditions of unstable ground conditions, which leads to the destruction of the surface slope and disturbance ecology.

The present invention is to increase the strength and flexibility of the protective coating slopes and ecological environmental protection.

The problem is solved due to the fact that the way to strengthen slopes before reinforcement are preparing ground surface slope by terracing violated its layers in accordance with its geological structure, replacing the unstable soil areas of the slope for draining material that is compacted and reinforced horizontally spaced polymeric gratings with a pitch of not more than 1 m, after which the surface slope place galvanized steel mesh double twist hexagonal cells and combined with the above re Adami, then the surface of the slope is divided into sections with a pitch not exceeding 3 m, by installing partitions of galvanized steel mesh double twist hexagonal cells with a maximum height of 0.3 m, and then in the section of the fill layer of loamy soil, and on the last stack biotextile and planted.

The technical result of the invention is that provides high strength and flexibility of the protective coating in unstable soil.

The proposed method is illustrated in the drawings: figure 1 shows the construction of fortifications, in figure 2, node a in figure 1.

The device design slopes includes polymeric grating 1, galvanized steel mesh 2 double twisting hexagonal cells and a vertical wall 3 made of galvanized mesh double twist hexagonal cells. Vertical partition 3 divides the surface of the slope section 4.

The method is as follows: first training ground surface slope, which carry out the terracing of the disturbed slope due to the displacement of local soil with steep terraces on the lower parts. On the territories of the development of landslide processes excavation in the body of the landslide is possible to the plane of its slip. Then e is the surface of the poured draining material, for example sand, compacted, watered and reinforced horizontally spaced polymeric gratings with a pitch of not more than 1 m of the Polymer lattice is made of polypropylene with a limit of tensile strength of not less than 21 kN/m and a minimum tensile strength of not less than 60 kN/m

Next on the prepared surface slope install galvanized steel mesh double twist hexagonal cells. The mesh is made of thick steel wire galvanizing with tensile strength of 35-50 kg/mm2. Then the grid is combined with a reinforcing polymer lattices, after which the surface slope is divided into sections. For this set of partitions of galvanized steel mesh double twist hexagonal cell height of not more than 0.3 m increments not exceeding 3 m Then formed in the frame fill loamy soil with thickness of 0.1 m, condense, and then placed a layer of vegetable soil, cover with biotextiles and planted.

The proposed method is the coating of the slopes provides high strength and flexibility in the conditions of unstable ground conditions, does not violate the environment and protects the slopes or slopes in complex engineering-geological and hydrogeological conditions.

A way to strengthen slopes, including reinforcement ale is nami, located in the body of the slope, wherein the front reinforcement are preparing ground surface slope by terracing violated its layers in accordance with the geological structure, replacing the unstable soil areas on draining material, which is then compacted and reinforced polymer bars in increments of not more than 1m, and then place the galvanized steel mesh double twist hexagonal cells and combined with the above lattices, then the prepared surface slope is divided into sections with a pitch not exceeding 3 m, by installing partitions of galvanized steel mesh double torsion height of not more than 0.3 m, then fill loamy soil thickness of 0.1 m, condense it, is placed a layer of vegetable soil, and on the last stack biotextile and planted.



 

Same patents:

FIELD: securing of slopes or inclines, particularly for ground slopes and water pool banks stabilization, for artificial water pool building and reconstruction, for minor river recovery and erosive slope consolidation.

SUBSTANCE: method involves performing masonry works of building members by laying building member layers in alternation with fabric layers. The building members are rough stones, which are connected one to another by fabric impregnated with binding material to provide elastic connection areas between stone layers. Ground stabilization device comprises masonry formed of building members alternated with fabric layers. The building members are rough stones, which are connected one to another by fabric to form elastic connection areas between stone layers.

EFFECT: increased environmental safety, improved appearance and technological effectiveness, increased elasticity of stone connection.

16 cl, 3 dwg, 2 ex

FIELD: manufacture of plant covers used for beautification of streets, squares, construction of sportive grounds, as well as for landscape designing.

SUBSTANCE: method involves spraying organic adhesive onto fine-mesh basalt net by means of specially designed equipment for filling meshes to thereby create strong carrier base. Net is perfectly ecologically safe and allows seeds to be uniformly sown over the entire area of lawn. Adhesive used for providing lawn is functioning as nutritive compound for seeds and is used simultaneously for protecting seeds from external influence of moisture and air during prolonged periods. After drying in first drying chamber, mixture of lawn grass seeds is sown onto carrier base through dosing hopper, followed by applying onto given mixture of organic adhesive and drying in second drying chamber. After discharge from drying chamber, ready dry lawn is cut into parts of various lengths, wound into roll and hermetically packed in polyethylene film for further storage and transportation. Lawn is placed on site by unwinding roll onto preliminarily prepared ground and spilling nutrient mixture thereon, followed by heavy irrigation to provide for sprouts emergence. Nutrient mixture and lawn grass seed mixture compositions are worked out depending on climatic zone and composition of parent ground on which lawn is to be provided.

EFFECT: increased efficiency by providing uniform sowing of seeds over the entire lawn area, and damage-free transportation and handling of grown lawn.

1 dwg

FIELD: building, particularly bridge building.

SUBSTANCE: method involves compacting ground of embankment body and cones; forming drainage layers and water-draining chutes on coating; creating pad with variable rigidity decreasing in direction from bridge along embankment for length equal to approach slab length; arranging approach slab having upward gradient in bridge direction. Pad of embankment body is formed by creating cast-in-place piles along with surface compaction of upper cast-in-place pile parts and upper embankment layer, wherein transversal cast-in-place piles form strips having medium rigidity jointly with ground forming embankments. The medium rigidity is reduced from maximal value at bridge pier to minimal one at approach slab end opposite to bridge pier.

EFFECT: reduced embankment subsidence under approach slab due to decreased pad and draining material displacement in horizontal direction.

8 cl, 6 dwg

FIELD: building, particularly for slope consolidation and for stabilizing deep front landslide areas.

SUBSTANCE: structure includes foundation mat and piles formed in wells grouped in rows. Upper pile parts are embedded in foundation mat, lower one is restrained by not-sliding ground layers. Piles are composite along their lengths. Central pile parts are not filled with concrete. Heights of upper and lower pile parts decrease towards landslide head. Structure to prevent deep front land-slides comprises separate local pile groups connected by foundation mats and located within landslide body boundaries. Each foundation mat has tension bars anchored in stable slope layers and arranged under and above foundation mat along slope to retain thereof against displacement and rotation.

EFFECT: improved slope stability, increased operational reliability of structure built on wide landslides, reduced building time and material consumption.

2 dwg

FIELD: building, particularly hydraulic structure reinforcement.

SUBSTANCE: method is performed in two-stages. The first stage involves forming vertical elongated flat ground massifs secured by hardening material. Massifs are created in crest embankment area and in upper area of embankment slope so that massifs are spaced minimal available distance from crest and pass through embankment body, including land-sliding upper embankment slope area. Massifs are anchored in mineral bottom by lower edges thereof and are arranged at least in three rows and there are at least three massifs in each row. Method for massifs forming involves driving double-slotted injectors directly in embankment ground or in wells formed in embankment and having plugged wellhead; orienting injector slots perpendicular to hydraulic pressure head vector direction in embankment area to be reinforced; injecting hardening material under increased pressure across horizons from top to bottom or in reverse direction, wherein injection is initially performed under 5-15 atm pressure and at minimal rate in each second injector of one outermost row beginning from extreme ones; feeding hardening material in previously missed injectors in this row; supplying injectors of another extreme row with hardening material in the same way; feeding hardening material to ejectors of medium rows under 10-20 atm pressure; performing the second reinforcement stage as material hardens to obtain 70% strength. The second reinforcement stage involves forming vertical elongated flat massifs of secured ground anchored in mineral bottom by lower edges thereof and arranged at least in three rows, wherein each one includes at least three massifs. Massifs extend at the angle exceeding embankment slope angle to horizontal line. Massifs are formed with the use of double-slotted injectors in remainder embankment area. Injector slots are directed perpendicular to hydraulic pressure head vector direction in embankment area to be reinforced. Hardening material is ejected in above succession, wherein hardening material pressure is equal to design process pressure enough for direction of feeding hardening material through injector slots and lesser than hardening material injection pressure of the first reinforcement stage.

EFFECT: increased reliability of structure reinforcement; prevention of land-slide on structure slopes.

3 cl, 3 dwg

The invention relates to the field of construction and mining and can be used to restore the broken ledges during operation of the quarry
The invention relates to the field of construction, in particular the field of creation of soddy coatings and care for them, and can be used for the establishment and operation of outdoor sports soddy sites, high-quality lawn areas (tennis courts, Golf courses), ornamental lawns and soil-protective coatings slopes

The invention relates to the mining industry and can be used for open development of mineral deposits

The invention relates to hydraulic construction and can be used as shore protection structures in erodible channels of rivers, canals and other structures, flows have full of a lot of sediment

The invention relates to hydraulic construction and can be used as shore protection structures in erodible channels of rivers, canals and other structures

FIELD: building, particularly hydraulic structure reinforcement.

SUBSTANCE: method is performed in two-stages. The first stage involves forming vertical elongated flat ground massifs secured by hardening material. Massifs are created in crest embankment area and in upper area of embankment slope so that massifs are spaced minimal available distance from crest and pass through embankment body, including land-sliding upper embankment slope area. Massifs are anchored in mineral bottom by lower edges thereof and are arranged at least in three rows and there are at least three massifs in each row. Method for massifs forming involves driving double-slotted injectors directly in embankment ground or in wells formed in embankment and having plugged wellhead; orienting injector slots perpendicular to hydraulic pressure head vector direction in embankment area to be reinforced; injecting hardening material under increased pressure across horizons from top to bottom or in reverse direction, wherein injection is initially performed under 5-15 atm pressure and at minimal rate in each second injector of one outermost row beginning from extreme ones; feeding hardening material in previously missed injectors in this row; supplying injectors of another extreme row with hardening material in the same way; feeding hardening material to ejectors of medium rows under 10-20 atm pressure; performing the second reinforcement stage as material hardens to obtain 70% strength. The second reinforcement stage involves forming vertical elongated flat massifs of secured ground anchored in mineral bottom by lower edges thereof and arranged at least in three rows, wherein each one includes at least three massifs. Massifs extend at the angle exceeding embankment slope angle to horizontal line. Massifs are formed with the use of double-slotted injectors in remainder embankment area. Injector slots are directed perpendicular to hydraulic pressure head vector direction in embankment area to be reinforced. Hardening material is ejected in above succession, wherein hardening material pressure is equal to design process pressure enough for direction of feeding hardening material through injector slots and lesser than hardening material injection pressure of the first reinforcement stage.

EFFECT: increased reliability of structure reinforcement; prevention of land-slide on structure slopes.

3 cl, 3 dwg

FIELD: building, particularly for slope consolidation and for stabilizing deep front landslide areas.

SUBSTANCE: structure includes foundation mat and piles formed in wells grouped in rows. Upper pile parts are embedded in foundation mat, lower one is restrained by not-sliding ground layers. Piles are composite along their lengths. Central pile parts are not filled with concrete. Heights of upper and lower pile parts decrease towards landslide head. Structure to prevent deep front land-slides comprises separate local pile groups connected by foundation mats and located within landslide body boundaries. Each foundation mat has tension bars anchored in stable slope layers and arranged under and above foundation mat along slope to retain thereof against displacement and rotation.

EFFECT: improved slope stability, increased operational reliability of structure built on wide landslides, reduced building time and material consumption.

2 dwg

FIELD: building, particularly bridge building.

SUBSTANCE: method involves compacting ground of embankment body and cones; forming drainage layers and water-draining chutes on coating; creating pad with variable rigidity decreasing in direction from bridge along embankment for length equal to approach slab length; arranging approach slab having upward gradient in bridge direction. Pad of embankment body is formed by creating cast-in-place piles along with surface compaction of upper cast-in-place pile parts and upper embankment layer, wherein transversal cast-in-place piles form strips having medium rigidity jointly with ground forming embankments. The medium rigidity is reduced from maximal value at bridge pier to minimal one at approach slab end opposite to bridge pier.

EFFECT: reduced embankment subsidence under approach slab due to decreased pad and draining material displacement in horizontal direction.

8 cl, 6 dwg

FIELD: manufacture of plant covers used for beautification of streets, squares, construction of sportive grounds, as well as for landscape designing.

SUBSTANCE: method involves spraying organic adhesive onto fine-mesh basalt net by means of specially designed equipment for filling meshes to thereby create strong carrier base. Net is perfectly ecologically safe and allows seeds to be uniformly sown over the entire area of lawn. Adhesive used for providing lawn is functioning as nutritive compound for seeds and is used simultaneously for protecting seeds from external influence of moisture and air during prolonged periods. After drying in first drying chamber, mixture of lawn grass seeds is sown onto carrier base through dosing hopper, followed by applying onto given mixture of organic adhesive and drying in second drying chamber. After discharge from drying chamber, ready dry lawn is cut into parts of various lengths, wound into roll and hermetically packed in polyethylene film for further storage and transportation. Lawn is placed on site by unwinding roll onto preliminarily prepared ground and spilling nutrient mixture thereon, followed by heavy irrigation to provide for sprouts emergence. Nutrient mixture and lawn grass seed mixture compositions are worked out depending on climatic zone and composition of parent ground on which lawn is to be provided.

EFFECT: increased efficiency by providing uniform sowing of seeds over the entire lawn area, and damage-free transportation and handling of grown lawn.

1 dwg

FIELD: securing of slopes or inclines, particularly for ground slopes and water pool banks stabilization, for artificial water pool building and reconstruction, for minor river recovery and erosive slope consolidation.

SUBSTANCE: method involves performing masonry works of building members by laying building member layers in alternation with fabric layers. The building members are rough stones, which are connected one to another by fabric impregnated with binding material to provide elastic connection areas between stone layers. Ground stabilization device comprises masonry formed of building members alternated with fabric layers. The building members are rough stones, which are connected one to another by fabric to form elastic connection areas between stone layers.

EFFECT: increased environmental safety, improved appearance and technological effectiveness, increased elasticity of stone connection.

16 cl, 3 dwg, 2 ex

FIELD: building, particularly to erect ground structures, namely to consolidate slopes, to reinforce banks of motor roads and railroads, dams, irrigation channels and river banks.

SUBSTANCE: method for slope reinforcing with members arranged in slope body involves preparing ground surface by terracing disturbed layers thereof in accordance with geological structure thereof along with substituting ground in unstable areas for draining material; compacting the draining material and reinforcing thereof with grids of polymeric material having openings of not more than 1 m; arranging zinc-coated steel mesh formed by two-for-one twisting method and having hexahedral openings; connecting the steel mesh with above grids; dividing prepared slope surface into sections with pitch not exceeding 3 m by installing the partitions of zinc-coated steel mesh formed by two-for-one twisting method having height of not more than 0.3 m; scattering loamy ground to form loamy layer having 0.1 m thickness; compacting the loamy ground; scattering vegetable soil; laying bio-textile on vegetable soil and planting greenery.

EFFECT: increased flexibility of protective coating and improved environment protection.

2 dwg

FIELD: agriculture, particularly steep slope terracing to adapt the slope for fruit trees and other crops growth.

SUBSTANCE: method for terracing slopes having steepness equal to or exceeding natural soil slip angle involves forming step-shaped ledges having depressions; scattering soil excavated from the slope over the ledges; stabilizing the soil with reusable rectangular netted retaining walls. The retaining wall has frame-like wall base created of welded angular or channel bars or bars of another cross-section. The wall bases are installed on the slope along lower ledge bounds and inclined at 60° angle with respect to horizon line. The wall bases are fixed by support and bearing wedges for a time equal to soil conglomeration time, wherein liquid or granular fertilizer is preliminarily introduced in soil and soil is laid down with perennial grass before ledge hardening.

EFFECT: increased slope use factor.

3 dwg

FIELD: building, particularly to stabilize slope landslides.

SUBSTANCE: landslide control structure comprises vertical walls built in base formed under the landslide and located along the landslide so that distance between adjacent walls decreases towards lower landslide end. Vertical walls are made of pile rows defining pleat-like system having pitch preventing ground punching between the piles. The pleats are directed so that corner apexes thereof face sliding ground and grillages of adjacent pleat flanges are connected by transversal beams.

EFFECT: increased load-bearing capacity and increased technological efficiency of structure erection.

2 dwg

FIELD: building, particularly to reinforce landslide slopes, particularly extensive landslides.

SUBSTANCE: landslide control structure comprises bored piles fixed in stable slope ground layers and retained by anchoring means. To provide stability of lower landslide part inclined bars of anchor means are connected to bored pile heads. The anchor means are drilled down the slope and have fan-like structure. The anchor means are located at different levels in landslide body.

EFFECT: reduced labor inputs and material consumption for landslide control structure erection and increased stability of landslide massif.

2 cl, 2 dwg

FIELD: mining, particularly to consolidate or to protect pit sides against landslide during pit operation.

SUBSTANCE: method involves laying transversal members connected to ropes along slope, wherein the ropes are fixedly secured to anchors located in upper bench berm; drilling inclined wells extending to bench slope; installing next anchor along lower edge of upper berm and drilling next inclined well cluster. Suspending net to bench slope and pulling down ropes from upper berm through drilled inclined wells so that the first rope ends extend from bench slope; lowering the rope ends to lower berm and securing thereof to transversal members arranged above the net, wherein the transversal members are installed beginning from lower berm; tightening the ropes and fastening the second rope ends to anchors.

EFFECT: increased operational safety and decreased labor inputs for bench slope consolidation.

1 ex, 2 dwg

Up!