Method and reactor for performing non-adiabatic catalytic reactions

FIELD: chemical industry; conducting non-adiabatic reactions.

SUBSTANCE: proposed method includes the following stages: introducing first flow of reagents in parallel into first reaction zone and second flow of reagents into second reaction zone; interaction of first flow of reagents with catalyst in first reaction zone is effected under condition of indirect heat exchange with heat exchange medium and interaction of second flow of reagents with catalyst is effected under condition of indirect heat exchange with heat exchange medium; gases formed due to reforming with water vapor are evacuated; catalyst in first reaction zone is located inside tubular reactor under conditions of indirect heat exchange with heat exchange medium due to introduction of this medium into tubular heat exchange zone located around tubular reactor with first reaction zone and catalyst in second reaction zone is located on side of heat exchange zone envelope under condition of indirect heat exchange with heat exchange medium.

EFFECT: enhanced compactness of reactors; reduced usage of expensive materials.

6 cl, 2 dwg

 

The invention relates to a method and reactor system for carrying out non-adiabatic reactions in the treated gas in the presence of a catalyst exothermically or endothermically in terms of indirect heat exchange with a suitable heat exchange medium.

The main objective of the present invention is to create a way for nonadiabatic reactions, comprising the following stages:

introduction parallel to the first flow of the reactants in the first reaction zone and a second flow of reagents to a second reaction zone under reaction conditions the interaction of the first flow of the reactants with the catalyst in the first reaction zone under conditions of indirect heat exchange with a heat exchange medium and the interaction of the second flow of the reactants with the catalyst in the second reaction zone under conditions of indirect heat exchange with a heat exchange medium and the catalyst in the first reaction zone is located inside the tubular reactor under conditions of indirect heat exchange with a heat exchange medium through the introduction of this medium in the tubular heat transfer area, located around the tubular reactor of the first reaction zone and the catalyst in the second reaction zone is side shell area of heat transfer in terms of indirect heat exchange with a heat exchange medium.

The present invention particularly is Olesno for carrying out reactions of reforming with water vapor in the feed hydrocarbons by heat from the hot gas, emerging from the autothermal reactor reforming with water vapor and/or gas, the resulting process of reforming with water vapor.

A special variant of implementation of the reactor system in accordance with the present invention is described in more detail in the following description with reference to the drawings, in which figure 1 shows schematically the reaction system, which is used in the production of gas with a high content of hydrogen and/or carbon monoxide from a stream of hydrocarbon feedstock under reforming with water vapor.

Reforming with steam is an endothermic chemical reaction, where the hydrocarbons and water vapor react on the catalyst reforming with water vapor, if the corresponding heat serves to where reaction takes place.

The reactor system used in this embodiment of the invention, consists of three reactors in which the process of reforming with water vapor. Three reactors R1, R2 and R3 operate in parallel.

R1 is the adiabatic reactor. Reagents for the process in R1 consist of hydrocarbons, water vapor and a gas enriched with oxygen, which is introduced into the reactor at the appropriate temperature and mix. The oxygen and the hydrocarbon will react by combustion reaction, and will get hot gas from hydrocarbon residue which, water vapor and the resulting combustion products. Then this hot gas is passed through a bed of reforming catalyst and catalytically converted into hot mixture of hydrogen, carbon monoxide and carbon dioxide.

R2 and R3 are the two reactors with reciprocating thread. Reagents for processes in R2 and R3 represent a mixture of hydrocarbons and water vapor, which is heated to the appropriate temperature before passing through the catalyst bed reformer. Walls surround and close the catalyst layers in R2 and R3. The hot gas flows from the outside of these walls in opposite with the reacting gases in the catalyst area. Heat passes through the walls from the hot gas to the reacting gases, while these gases into the hot mixture of hydrogen, carbon monoxide and carbon dioxide.

Gases resulting from R1, R2 and R3, mix and get a hot gas current from the outside of the walls of R2 and R3, where they form the source of heat for the reactions in R2 and R3. This gas is referred to as a heating gas.

The main advantage of the present invention is that the walls of R2 and R3 may be arranged so as to form an optimal channel for heating the gas.

In addition, the present invention creates a reactor system which is particularly useful for carrying out the above processes. Usually the reactor the system of the present invention includes connected in parallel to the first and second reactor compartment, which are adapted to hold the catalyst and to accommodate the flow of reagents, and the first part has the form of a tube reactor, where:

the first zone of the heat exchange is located around the first reactor compartment and is separated from it, and the second reactor compartment is located around the second heat exchange zone. While the first and second reactor compartment can be located in a common shell or the first and second heat exchange zone is formed by a common channel.

Reactor R2 contains the catalyst inside the tubes. Reactor R3 holds the catalyst on the outside of the tubes. United reactor R2 and R3 represents the number of double tubes where the inner tube filled with a catalyst (R2), and a double tube, moreover, are located in the configuration, ensure the volume between the double tubes, which must also be filled with a catalyst, i.e. the reactor R3. Significant amount of heat received from the United gas from the reactors R1, R2 and R3 back into the reactors R2 and R3. The resulting gas flows into the tubular channels provided with double tubes in countercurrent flow relative to the flow in reactors R2 and R3. The heat fed into the reactor R2 through the inner wall of the double tubes, and the reactor R3 provide heat from the outer wall of the double tubes.

The advantage of combined reactor, which is shown in figure 2, is that is, that heat exchange channels are used in an optimal manner, i.e. the inner wall and outer wall are used as heat transfer surfaces, thus ensuring optimal use of expensive material. This also leads to a very compact design of the equipment compared with other types of devices reformer with heat and at the same time ensures a low pressure drop.

Upon cooling the product gas there is a risk of corrosion of the metal spray. Another advantage of the design of the combined reactor is to limit the risk of spraying metal on a limited surface.

The dimensions of the double tube usually consists of: outer diameter of the inner tube 50 to 140 mm, and the outer diameter of the outer tube 80 to 170 mm Location may be, but not necessarily, performed in such a way that the volume ratio of the heat exchange/area/volume of catalyst is the same for the outer tubes and inner tubes.

1. Way for nonadiabatic reactions, comprising the following stages: introduction parallel to the first flow of the reactants in the first reaction zone and a second flow of reagents to a second reaction zone under reaction conditions the interaction of the first flow of the reactants with the catalyst in the first reaction zone under conditions C is yoga heat exchange with a heat exchange medium and the interaction of the second flow of the reactants with the catalyst in the second reaction zone under conditions of indirect heat exchange with a heat exchange medium, and removing the first and second formed as a result of reforming with water vapor gas, and the catalyst in the first reaction zone is located inside the tubular reactor under conditions of indirect heat exchange with a heat exchange medium through the introduction of this medium in the tubular heat transfer area, located around the tubular reactor of the first reaction zone and the catalyst in the second reaction zone is located from the side shell area of heat transfer in terms of indirect heat exchange with a heat exchange medium.

2. The method according to claim 1, where nonadiabatic reaction is endothermic reforming with water vapor of hydrocarbons.

3. The method according to claim 1, where the heat transfer medium includes the stream exiting the autothermal reforming with water vapor hydrocarbons, and/or the formed gas.

4. Reactor system for carrying out non-adiabatic catalytic reactions involving the United parallel to the first and second reactor compartment and adapted to hold the catalyst and to accommodate the flow of reagents, and the first part has the form of a tube reactor, where the first heat transfer area is located around the first reactor compartment and is separated from it, and the second reactor compartment is located around the second zone of the heat exchange.

5. Reactor system according to claim 4, where the first and second reactor compartment are in General the th shell.

6. Reactor system according to claim 4, where the first and second heat exchange zone is formed by a common channel.



 

Same patents:

FIELD: power industry, mechanical engineering and environmental control.

SUBSTANCE: the invention is pertaining to the field of high power industry, mechanical engineering and environmental control. In a explosion-proof chamber 1 with double-walls simultaneously feed a gaseous explosive mixture using pipeline 4 through channels 5 and inject hydrocarbons with the nucleuses of carbon crystallization using a pipeline 6 through an injector 7 with formation of a cone-shaped shell 8 with an inert cavity in the central zone. The shell 8 and the explosive mixture 9 form a cumulative charge. Conduct initiation of undermining of an explosive mixture 9, as a result of which the cumulative charge forms a cumulative spray 10 moving at a high speed along the axis of the cumulation. The gaseous products withdraw through pipeline 17. At collision of the cumulative spray 10 with a barrier having channels 11 of the cooling unit 2 the pressure and temperature there sharply increase ensuring growth of the formed crystals of diamond. Simultaneously conduct cooling with the help of pipelines 12 located in metal filings and granules 13. The atomized and cooled cumulative spray gets into the auxiliary chamber 3, where the diamonds 14 are separated, feed through the pipeline 15 to a power accumulator 16, in which they are settling. Separated hot hydrogen is removed for storing or utilization. The invention allows to magnify the sizes of dimensions crystals of diamond up to 800 microns and more, to decrease atmospheric injections, to reduce the net cost of the diamonds, to increase effectiveness of the device.

EFFECT: the invention ensures growth of sizes of diamonds crystals up to 800 microns and more, decrease of atmospheric injections, reduction of the net cost of the diamonds, increased effectiveness of the device.

2 cl, 2 dwg

FIELD: storage of gases in chemical, petrochemical ,and oil-refining industries.

SUBSTANCE: proposed oxygen storage method includes partial reduction of λ-Al2O3 on specific surface area of 200 - 400 m3/g doped with up to 0.5 mass percent of Sn during synthesis and subjected to oxidizing treatment at 500 °C in oxygen stream. Reduction is made by activated molecular, hydrogen, or hydrogen-containing hydrocarbon gas at gas temperature of 100 - 750 °C, pressure of 1 - 10 at., and humidity of 10-5 - 10-1 volume percent followed by freezing water produced in the process; storage of partially reduced λ-Al2O3 in arbitrary-humidity atmosphere at up to 50 °C or in vacuum, or in inert gas atmosphere at temperature of up to 750 °C and humidity of up to 10-5 volume percent; and oxidation of partially reduced λ-Al2O3 with water vapors at temperature of 100 - 750 °C or in vacuum at humidity of 10-5 - 10-2 volume percent.

EFFECT: enhanced holding capacity of hydrogen store at enhanced safety and low cost of its storage.

1 cl, 87 ex

FIELD: power equipment; generation of hydrogen in stationary plants and on transport facilities.

SUBSTANCE: proposed hydrogen generator operates on reaction of hydrolysis with solid reagent granules; hydrogen generator includes reaction reservoir filled with solid reagent granules, hydrogen supply main, liquid reagent supply main and heat exchanger for removal of reaction heat. Generator is also provided with loading bin with hatch which is hermetically sealed during operation of generator; arranged inside loading bin are starting heater and heat-transfer agent main connected to heat exchange loop for removal of reaction heat at its outlet. Operation of hydrogen generator includes loading the solid reagent granules from loading bin into liquid reagent reaction reservoir, heating the reagents for starting the generator, cooling the reagents in stationary mode, draining the reaction products from reaction reservoir and repeating all above-mentioned operations. Prior to loading the solid reagent granules into reaction reservoir, they are heated in loading bin to temperature of reaction; after discharge of solid reagent granules into reaction reservoir, bin is filled with next portion of solid reagent granules which are heated with heat of reaction. Multi-purpose loading bin is used as important component of generator temperature control system.

EFFECT: enhanced efficiency; fast response due to reduced power requirements and starting time; enhanced compactness.

3 cl, 1 dwg

FIELD: alternate fuels.

SUBSTANCE: invention relates to generation of synthesis gas, containing hydrogen and carbon monoxide, for use in synthesis of gasoline, methanol, or dimethyl ether. Process includes following stages: removing solely hydrogen sulfide form natural gas; containing hydrogen sulfide and carbon dioxide, by passing natural gas through hydrogen sulfide-removal apparatus filled with hydrogen sulfide adsorbent; and adding carbon dioxide and water steam H2S-free natural gas thereby producing gas blend. Gas blend is then fed into reaction tube of reforming plant to carry out steam reforming reaction in gas blend. According to invention, natural gas is passed through convection section communicating with radiation combustion chamber of reforming plant to heat natural gas to temperature suitable to reaction between hydrogen sulfide (in natural gas) and hydrogen sulfide adsorbent.

EFFECT: enabled selective removal of hydrogen sulfide from natural gas.

6 cl, 2 dwg

FIELD: nuclear power engineering.

SUBSTANCE: proposed method includes passage of flow of "light" and "heavy" water mixture under pressure through one or several holes of dielectric element, acting on this mixture by magnetic field and dividing it into three flows: two flows having different ions by electrical sign and chemical properties are electrically insulated, accelerated and directed to collimators. "Light" and "heavy" water mixture at specific resistance of about 109 ohms·m is taken at ratio required for control of nuclear reaction. Device proposed for realization of this method has housing which is dielectrically resistant to cavitation emission and is used for receiving the mixture. Insert mounted in housing is made from dielectric material liable to cavitation emission and provided with one or several holes for passage of mixture. Housing is also provided with electrically insulated branch pipes for receiving the ionized flows. Located in way of ionized flows are control electrodes and contactors; collimators with contactors are mounted at the end of ionized flow.

EFFECT: possibility of production hydrogen from "light" and "heavy" water mixture in amount sufficient for practical use.

3 cl, 1 dwg

FIELD: methods of production of hydrogen, electrical power and the hydraulically purified products out of hydrocarbon raw materials.

SUBSTANCE: the invention is pertaining to the method of production of hydrogen, electrical power and, at least, one hydraulically purified product out of the hydrocarbon raw material containing at least a fraction, which has the same range of boiling-out or higher, than the temperature range of boiling of a hydraulically purified product, which will be produced; this method includes the following operations: treatment of the hydrocarbon raw material with hydrogen at presence of the applied catalyst; at that hydrogen at least partially is produced from fraction of the hydraulically purified raw material having the temperature range of boiling different from the temperature range of boiling of the fraction of hydrocarbon raw material, from which will be produced a hydraulically purified product or at least from a part of the indicated product of the hydraulical purification; separation of the hydraulically purified product from the hydraulically purified raw material, when the hydraulically purified product is necessary to separate; a part or the whole rest hydraulically purified raw material and hydraulically purified product, if it will not be separated to produce hydrogen; a part or all hydrogen, which is not used for treatment of hydrocarbons, is subjected to processing with production of electrical power; or a part of the hydraulically purified raw material and the hydraulically purified product, if it will be not separated, is subjected to processing with production of an electrical power; and the rest is directed to processing with production of hydrogen. The invention allows to produce simultaneously hydrogen, electrical power, and at least one hydraulically purified hydrocarbon product.

EFFECT: the invention allows to produce simultaneously hydrogen, electrical power, and at least one hydraulically purified hydrocarbon product.

18 cl, 1 dwg, 9 ex

FIELD: liquid-phase reforming.

SUBSTANCE: the invention is pertaining to liquid-phase reforming of hydrocarbons or oxygen-containing compositions. The method is exercised by interaction of a hydrocarbon or an oxygen-containing organic composition with water using a pulse electrical discharge in a liquid containing the indicated hydrocarbon or a oxygen-containing organic composition and water. Such a method is exercised in the apparatus, that includes a reactor, electrodes positioned inside the pointed reactor, a direct-current source for feeding the direct current to the pointed electrodes and an outlet opening for withdrawal of produced as a result of it hydrogen and carbon monoxide. The given invention allows realization of the process at normal temperature and a pressure, and at that there is no necessity for an additional stage of separation of products of the unreacted substances. Moreover the by-products such as acetylene are dissolved and absorbed in the liquid and again interact with the following conversion into synthesis gas.

EFFECT: the invention allows realization of the process at normal temperature and a pressure, excluding necessity for an additional stage of separation of products of the unreacted substances.

16 cl, 5 dwg, 3 ex, 3 tbl

FIELD: alloys for generation of hydrogen.

SUBSTANCE: alloy may be used in internal combustion engines working on hydrogen fuel and electric motor cars using hydrogen electrochemical generators. Aluminum-based alloy contains aluminum and dehydrated hydroxide of alkali metal up to 10% by weight or dehydrated hydroxide of alkali metal and copper up to 5%; total amount of these additives shall not exceed 10%. Method of production of such alloy includes placing the dehydrated hydroxide of alkali metal on crucible bottom with layer of aluminum laid over it; copper may be also added if necessary; melting is performed in induction furnace in vacuum at 0.2-0.5 atm and inert gas-shielded atmosphere. First hydroxide of alkali metal is molten and aluminum (and copper, if necessary) is molten in this melt at temperature of 660 C. Hydrogen gas generator includes reactor made in form of heat exchanger whose plates or tubes are filled with water.

EFFECT: low cost of process; increased productivity.

5 cl, 1 dwg

FIELD: chemical industry; petrochemical industry; oil refining industry and other industries; methods of production a synthesis gas.

SUBSTANCE: the invention is pertaining to the field of the methods of production of a synthesis of gas and may be used in chemical, petrochemical, oil refining and other industries. The method of production of synthesis gas using a vapor or a vapor-carbon dioxide conversion of a hydrocarbonaceous raw material provides for purification of the hydrocarbonaceous raw material from sulfuric compounds, its commixing with steam or with steam and carbon dioxide with formation of a steam-gas mixture. The catalytic conversion of the steam-gas mixture is conducted in a reactor of a radially-spiral type, in which in the ring-shaped space filled with a nickel catalyst with a size of granules of 0.2-7 mm there are the hollow spiral-shaped walls forming the spiral-shaped channels having a constant cross section for conveyance of a stream of the steam-gaseous blend in an axial or in a radially-spiral direction. At that into the cavities of the walls feed a heat-transfer agent to supply a heat into the zone of reaction. The invention ensures intensification the process.

EFFECT: invention ensures intensification the process.

4 cl, 4 dwg, 2 tbl, 3 ex

FIELD: methods of production a synthesis gas.

SUBSTANCE: the invention is pertaining to the process of production of hydrogen and carbon oxide, which mixture is used to be called a synthesis gas, by a selective catalytic oxidation of the hydrocarbonaceous (organic) raw material in presence of the oxygen-containing gases. The method of production of the synthesis gas includes a contacting with a catalyst at a gas hourly volumetric speed equal to 10000-10000000 h-1, a mixture containing organic raw material and oxygen or an oxygen-containing gas in amounts ensuring the ratio of oxygen and carbon of no less than 0.3. At that the process is conducted at a linear speed of the gas mixture of no less than 2.2 · 10-11 · (T1 + 273)4 / (500-T2) nanometer / s, where: T1 - a maximum temperature of the catalyst, T2 - a temperature of the gas mixture fed to the contacting. The linear speed of the gas mixture is, preferably, in the interval of 0.2-7 m\s. The temperature of the gas mixture fed to the contacting is within the interval of 100-450°C. The maximum temperature of the catalyst is within the interval of 650-1500°C. The technical effect is a safe realization of the process.

EFFECT: the invention ensures a safe realization of the process.

10 cl, 5 ex

FIELD: power industry, mechanical engineering and environmental control.

SUBSTANCE: the invention is pertaining to the field of high power industry, mechanical engineering and environmental control. In a explosion-proof chamber 1 with double-walls simultaneously feed a gaseous explosive mixture using pipeline 4 through channels 5 and inject hydrocarbons with the nucleuses of carbon crystallization using a pipeline 6 through an injector 7 with formation of a cone-shaped shell 8 with an inert cavity in the central zone. The shell 8 and the explosive mixture 9 form a cumulative charge. Conduct initiation of undermining of an explosive mixture 9, as a result of which the cumulative charge forms a cumulative spray 10 moving at a high speed along the axis of the cumulation. The gaseous products withdraw through pipeline 17. At collision of the cumulative spray 10 with a barrier having channels 11 of the cooling unit 2 the pressure and temperature there sharply increase ensuring growth of the formed crystals of diamond. Simultaneously conduct cooling with the help of pipelines 12 located in metal filings and granules 13. The atomized and cooled cumulative spray gets into the auxiliary chamber 3, where the diamonds 14 are separated, feed through the pipeline 15 to a power accumulator 16, in which they are settling. Separated hot hydrogen is removed for storing or utilization. The invention allows to magnify the sizes of dimensions crystals of diamond up to 800 microns and more, to decrease atmospheric injections, to reduce the net cost of the diamonds, to increase effectiveness of the device.

EFFECT: the invention ensures growth of sizes of diamonds crystals up to 800 microns and more, decrease of atmospheric injections, reduction of the net cost of the diamonds, increased effectiveness of the device.

2 cl, 2 dwg

FIELD: storage of gases in chemical, petrochemical ,and oil-refining industries.

SUBSTANCE: proposed oxygen storage method includes partial reduction of λ-Al2O3 on specific surface area of 200 - 400 m3/g doped with up to 0.5 mass percent of Sn during synthesis and subjected to oxidizing treatment at 500 °C in oxygen stream. Reduction is made by activated molecular, hydrogen, or hydrogen-containing hydrocarbon gas at gas temperature of 100 - 750 °C, pressure of 1 - 10 at., and humidity of 10-5 - 10-1 volume percent followed by freezing water produced in the process; storage of partially reduced λ-Al2O3 in arbitrary-humidity atmosphere at up to 50 °C or in vacuum, or in inert gas atmosphere at temperature of up to 750 °C and humidity of up to 10-5 volume percent; and oxidation of partially reduced λ-Al2O3 with water vapors at temperature of 100 - 750 °C or in vacuum at humidity of 10-5 - 10-2 volume percent.

EFFECT: enhanced holding capacity of hydrogen store at enhanced safety and low cost of its storage.

1 cl, 87 ex

FIELD: power equipment; generation of hydrogen in stationary plants and on transport facilities.

SUBSTANCE: proposed hydrogen generator operates on reaction of hydrolysis with solid reagent granules; hydrogen generator includes reaction reservoir filled with solid reagent granules, hydrogen supply main, liquid reagent supply main and heat exchanger for removal of reaction heat. Generator is also provided with loading bin with hatch which is hermetically sealed during operation of generator; arranged inside loading bin are starting heater and heat-transfer agent main connected to heat exchange loop for removal of reaction heat at its outlet. Operation of hydrogen generator includes loading the solid reagent granules from loading bin into liquid reagent reaction reservoir, heating the reagents for starting the generator, cooling the reagents in stationary mode, draining the reaction products from reaction reservoir and repeating all above-mentioned operations. Prior to loading the solid reagent granules into reaction reservoir, they are heated in loading bin to temperature of reaction; after discharge of solid reagent granules into reaction reservoir, bin is filled with next portion of solid reagent granules which are heated with heat of reaction. Multi-purpose loading bin is used as important component of generator temperature control system.

EFFECT: enhanced efficiency; fast response due to reduced power requirements and starting time; enhanced compactness.

3 cl, 1 dwg

FIELD: alternate fuels.

SUBSTANCE: invention relates to generation of synthesis gas, containing hydrogen and carbon monoxide, for use in synthesis of gasoline, methanol, or dimethyl ether. Process includes following stages: removing solely hydrogen sulfide form natural gas; containing hydrogen sulfide and carbon dioxide, by passing natural gas through hydrogen sulfide-removal apparatus filled with hydrogen sulfide adsorbent; and adding carbon dioxide and water steam H2S-free natural gas thereby producing gas blend. Gas blend is then fed into reaction tube of reforming plant to carry out steam reforming reaction in gas blend. According to invention, natural gas is passed through convection section communicating with radiation combustion chamber of reforming plant to heat natural gas to temperature suitable to reaction between hydrogen sulfide (in natural gas) and hydrogen sulfide adsorbent.

EFFECT: enabled selective removal of hydrogen sulfide from natural gas.

6 cl, 2 dwg

FIELD: nuclear power engineering.

SUBSTANCE: proposed method includes passage of flow of "light" and "heavy" water mixture under pressure through one or several holes of dielectric element, acting on this mixture by magnetic field and dividing it into three flows: two flows having different ions by electrical sign and chemical properties are electrically insulated, accelerated and directed to collimators. "Light" and "heavy" water mixture at specific resistance of about 109 ohms·m is taken at ratio required for control of nuclear reaction. Device proposed for realization of this method has housing which is dielectrically resistant to cavitation emission and is used for receiving the mixture. Insert mounted in housing is made from dielectric material liable to cavitation emission and provided with one or several holes for passage of mixture. Housing is also provided with electrically insulated branch pipes for receiving the ionized flows. Located in way of ionized flows are control electrodes and contactors; collimators with contactors are mounted at the end of ionized flow.

EFFECT: possibility of production hydrogen from "light" and "heavy" water mixture in amount sufficient for practical use.

3 cl, 1 dwg

FIELD: methods of production of hydrogen, electrical power and the hydraulically purified products out of hydrocarbon raw materials.

SUBSTANCE: the invention is pertaining to the method of production of hydrogen, electrical power and, at least, one hydraulically purified product out of the hydrocarbon raw material containing at least a fraction, which has the same range of boiling-out or higher, than the temperature range of boiling of a hydraulically purified product, which will be produced; this method includes the following operations: treatment of the hydrocarbon raw material with hydrogen at presence of the applied catalyst; at that hydrogen at least partially is produced from fraction of the hydraulically purified raw material having the temperature range of boiling different from the temperature range of boiling of the fraction of hydrocarbon raw material, from which will be produced a hydraulically purified product or at least from a part of the indicated product of the hydraulical purification; separation of the hydraulically purified product from the hydraulically purified raw material, when the hydraulically purified product is necessary to separate; a part or the whole rest hydraulically purified raw material and hydraulically purified product, if it will not be separated to produce hydrogen; a part or all hydrogen, which is not used for treatment of hydrocarbons, is subjected to processing with production of electrical power; or a part of the hydraulically purified raw material and the hydraulically purified product, if it will be not separated, is subjected to processing with production of an electrical power; and the rest is directed to processing with production of hydrogen. The invention allows to produce simultaneously hydrogen, electrical power, and at least one hydraulically purified hydrocarbon product.

EFFECT: the invention allows to produce simultaneously hydrogen, electrical power, and at least one hydraulically purified hydrocarbon product.

18 cl, 1 dwg, 9 ex

FIELD: liquid-phase reforming.

SUBSTANCE: the invention is pertaining to liquid-phase reforming of hydrocarbons or oxygen-containing compositions. The method is exercised by interaction of a hydrocarbon or an oxygen-containing organic composition with water using a pulse electrical discharge in a liquid containing the indicated hydrocarbon or a oxygen-containing organic composition and water. Such a method is exercised in the apparatus, that includes a reactor, electrodes positioned inside the pointed reactor, a direct-current source for feeding the direct current to the pointed electrodes and an outlet opening for withdrawal of produced as a result of it hydrogen and carbon monoxide. The given invention allows realization of the process at normal temperature and a pressure, and at that there is no necessity for an additional stage of separation of products of the unreacted substances. Moreover the by-products such as acetylene are dissolved and absorbed in the liquid and again interact with the following conversion into synthesis gas.

EFFECT: the invention allows realization of the process at normal temperature and a pressure, excluding necessity for an additional stage of separation of products of the unreacted substances.

16 cl, 5 dwg, 3 ex, 3 tbl

FIELD: alloys for generation of hydrogen.

SUBSTANCE: alloy may be used in internal combustion engines working on hydrogen fuel and electric motor cars using hydrogen electrochemical generators. Aluminum-based alloy contains aluminum and dehydrated hydroxide of alkali metal up to 10% by weight or dehydrated hydroxide of alkali metal and copper up to 5%; total amount of these additives shall not exceed 10%. Method of production of such alloy includes placing the dehydrated hydroxide of alkali metal on crucible bottom with layer of aluminum laid over it; copper may be also added if necessary; melting is performed in induction furnace in vacuum at 0.2-0.5 atm and inert gas-shielded atmosphere. First hydroxide of alkali metal is molten and aluminum (and copper, if necessary) is molten in this melt at temperature of 660 C. Hydrogen gas generator includes reactor made in form of heat exchanger whose plates or tubes are filled with water.

EFFECT: low cost of process; increased productivity.

5 cl, 1 dwg

FIELD: chemical industry; petrochemical industry; oil refining industry and other industries; methods of production a synthesis gas.

SUBSTANCE: the invention is pertaining to the field of the methods of production of a synthesis of gas and may be used in chemical, petrochemical, oil refining and other industries. The method of production of synthesis gas using a vapor or a vapor-carbon dioxide conversion of a hydrocarbonaceous raw material provides for purification of the hydrocarbonaceous raw material from sulfuric compounds, its commixing with steam or with steam and carbon dioxide with formation of a steam-gas mixture. The catalytic conversion of the steam-gas mixture is conducted in a reactor of a radially-spiral type, in which in the ring-shaped space filled with a nickel catalyst with a size of granules of 0.2-7 mm there are the hollow spiral-shaped walls forming the spiral-shaped channels having a constant cross section for conveyance of a stream of the steam-gaseous blend in an axial or in a radially-spiral direction. At that into the cavities of the walls feed a heat-transfer agent to supply a heat into the zone of reaction. The invention ensures intensification the process.

EFFECT: invention ensures intensification the process.

4 cl, 4 dwg, 2 tbl, 3 ex

FIELD: methods of production a synthesis gas.

SUBSTANCE: the invention is pertaining to the process of production of hydrogen and carbon oxide, which mixture is used to be called a synthesis gas, by a selective catalytic oxidation of the hydrocarbonaceous (organic) raw material in presence of the oxygen-containing gases. The method of production of the synthesis gas includes a contacting with a catalyst at a gas hourly volumetric speed equal to 10000-10000000 h-1, a mixture containing organic raw material and oxygen or an oxygen-containing gas in amounts ensuring the ratio of oxygen and carbon of no less than 0.3. At that the process is conducted at a linear speed of the gas mixture of no less than 2.2 · 10-11 · (T1 + 273)4 / (500-T2) nanometer / s, where: T1 - a maximum temperature of the catalyst, T2 - a temperature of the gas mixture fed to the contacting. The linear speed of the gas mixture is, preferably, in the interval of 0.2-7 m\s. The temperature of the gas mixture fed to the contacting is within the interval of 100-450°C. The maximum temperature of the catalyst is within the interval of 650-1500°C. The technical effect is a safe realization of the process.

EFFECT: the invention ensures a safe realization of the process.

10 cl, 5 ex

FIELD: sorption neutralization of gases.

SUBSTANCE: proposed device includes two parallel horizontal gas-tight reactors arranged in casing at spaced relation; each reactor includes at least two sections filled with bulk granulated adsorbent and closed over ends with partitions carrying ejection pneumatic haulage units mounted above flow divider; device is provided with inlet and outlet branch pipes for delivery and discharge of gas; provision is made for V-shaped slide at angle of generatrices exceeding slope of repose for bulk adsorbent; V-shaped slide of each reactor is provided with drain branch pipe; walls of central reservoir are combined with hood excluding bridging of adsorbent; hood is equidistant relative to slide. Mechanism for hermetic discharge of used adsorbent includes longitudinal screw feeder and discharge pipe fitted with swivel gate valve; direction of turn of spiral provided on screw feeder of discharge mechanism is opposite to direction of main spiral.

EFFECT: improved quality of neutralization of gases; enhanced operational safety.

2 cl, 6 dwg

Up!