Method of operation of thermal power station

FIELD: heat power engineering.

SUBSTANCE: according to proposed method system water is heated in system heaters by steam of heating extractions of extraction turbine. Make up water of heat supply system is deaerated before delivering into return pipeline. For this purpose source and overheated water is delivered into deaerator. Maintaining of preset concentration of oxygen dissolved in deaerated make up water is provided by successive regulation of temperature of source water and rate of flash steam. If concentration of dissolved oxygen exceeds preset value, first, temperature of source water is raised and then, if necessary, rate of flash steam is increased and on the contrary, if concentration of oxygen is lower than preset value, first rate of flash steam is reduced and then temperature of source water.

EFFECT: increased efficiency and economy of thermal power station.

1 dwg

 

The invention relates to the field of power engineering and can be used in thermal power plants.

Known equivalent ways of operating thermal power stations, which mains water is heated in the network heaters steam heating cogeneration turbine, feed water heating before serving in the reverse pipeline network dearyou in the deaerator, which in the deaerator serves original and overheated water (see A.S. 1328563, B. I., 1987, No. 29). This analog adopted as a prototype.

The disadvantage of analogs and prototypes is reduced efficiency of the method of operation of thermal power plants due to the increased energy cost to heat the source water before the tank and the exhaust vapour from him, when the residual oxygen concentration Of2in deaerated water below the required value. Because regulatory quality deaeration of water, characterized primarily by dissolved oxygen in the deaerated water, can be achieved at significantly lower temperatures of the source water and the consumption of steam, deaeration almost always occurs with excessive temperature of the source water and excessive consumption of flash steam. Another disadvantage of this method is the low quality of deaeration of water, leading to lower reliability t is plooy electric station.

The technical result achieved by the present invention is to increase the effectiveness and efficiency of thermal power plants by maintaining the optimum temperature of the source water before the tank and flow of vapour withdrawn from him.

To achieve this result, a method of operating thermal power stations, which mains water is heated in the network heaters steam heating cogeneration turbine, feed water heating before serving in the reverse pipeline network dearyou, which in the deaerator serves the source and heated water.

The difference of the proposed method is that the maintenance of the desired concentration of dissolved oxygen O2in deaerated make-up water is carried out by sequential regulation of the temperature of the source water and the consumption of steam, and when the concentration of dissolved oxygen O2relative to a given value of the first raise the temperature of the source water, and then, if necessary, increase the amount of flash steam and, conversely, by lowering the oxygen concentration Of2relative to a given value of the first reduce consumption of flash steam from the deaerator, and then reduce the temperature of the source water.

A new way of operating thermal electric is practical station allows you to increase the effectiveness and efficiency of thermal power stations by providing the required quality deaeration at an economical work station.

Next, consider the information, confirming the possibility of carrying out the invention with getting the required technical result.

The drawing shows a schematic diagram of thermal power station explaining the method.

The station contains cogeneration turbine 1 with the selections of a pair connected by the heating medium to the heating selections, and turned on the heated environment in the network pipeline network heaters, deaerator 2 with flash steam piping 3, the source of water 4 and the hot water 5 is connected by a pipeline deaerated makeup water 6 reverse network line 7, is included in the source water pipeline 4 source water heater 8 with pipe heating environment. The station is equipped with a regulator dissolved oxygen 9 in the make-up water heating system, which is connected to the sensor dissolved oxygen 10 in deaerated make-up water and with regulatory bodies 11 on the pipeline of the heating medium heater source water and 12 on the exhaust tube of a flash steam.

Consider the example of implementing the inventive method of operating thermal power station.

Mains water is heated in the network heaters steam heating cogeneration turbine 1, feed water heating before serving in the reverse pipeline network 6 on aeronaut in the deaerator 2, why in the deaerator serves the source and heated water. The source water is heated by steam the bottom of the heating process heater 7. Maintain the desired concentration of dissolved oxygen in the deaerated makeup water is carried out by sequential regulation of the temperature of the source water and flash steam consumption. When the concentration of dissolved oxygen relative to a given value of the first raise the temperature of the source water within the heat output of heater source water, and then, if necessary, increase the amount of flash steam and, conversely, by lowering the concentration of oxygen relative to a given value of the first reduce the consumption of steam, and then reduce the temperature of the source water.

As the regulator About2you can use commercially available microprocessor controller remikont R-130 to implement about 90 management programs regulated processes, moreover, has a number of features of self-regulated processes. Implementation with it, provided the claimed invention consistent temperature control of the source water and flash steam consumption (in this sequence and is the main distinctive feature of the claimed method) when used as an adjustable factor ostatok the CSOs oxygen content is not difficult. Operations are blocking signals from the controller regulators are implemented by the Remikont on the basis of the input in the sequence of operation of the regulatory authorities and are valid for a particular plant spacing changes the temperature of the source water and the consumption of steam.

Thus, the new method can improve the effectiveness and efficiency of thermal power stations by providing a set concentration of dissolved oxygen in the deaerated makeup water at an economical operation of the turbine and the station as a whole.

The method of operation of a thermal power station, at which mains water is heated in the network heaters steam heating cogeneration turbine, feed water heating before serving in the reverse pipeline network dearyou in the deaerator, for which it serves original and overheated water, characterized in that the maintenance of the desired concentration of dissolved oxygen in the deaerated makeup water is carried out by sequential regulation of the temperature of the source water and the consumption of steam, and when the concentration of dissolved oxygen relative to a given value of the first raise the temperature of the source water, and then, if necessary, increase the amount of flash steam and, on the contrary, the ri lowering the concentration of oxygen relative to a given value first, reduce the consumption of steam, and then reduce the temperature of the source water.



 

Same patents:

FIELD: power engineering.

SUBSTANCE: method includes utilization of heat exhausted from additional steam-gas turbine plant for generation of high pressure steam and additional low pressure steam. High pressure steam is sent to and expanded in thermal steam turbine. Low pressure steam is fed to additional low pressure combustion chamber of steam-gas turbine plant, additional fuel is sent same way as steam, and temperature of steam-gas mixture is set mainly at level close to 900°C and it is expanded in low pressure steam-gas turbine. Nutritious water for generation of high pressure steam is fed from deaerator of high pressure heating and electrical line. Into steam-gas mixture, cooled down during generation of low pressure steam, irrigation water is injected, steam component of this steam-gas mixture is condensed, formed condensate is separated and drained into tank for separated water, from which cooled down irrigation water is fed for condensation of steam in steam-gas mixture. Least portion of separated water is used as nutritious water for generation of low pressure steam. Heat of most portion of separated water is used to heat a portion of network water from closed thermal system of main electrical and heating line.

EFFECT: higher efficiency.

2 dwg

FIELD: power engineering.

SUBSTANCE: heat exhausted from additional steam-gas turbine plant is utilized to generated high pressure steam and additionally low pressure steam. High pressure steam is sent to and expanded in thermal steam turbine. Low pressure steam is sent to additional low pressure combustion chamber of steam-gas turbine plant, to where also additional fuel is directed, temperature of steam-gas mixture is set mainly at level close to 900°C and expanded in low pressure steam-gas turbine. Nutritious water for generation of high pressure steam is taken from high pressure deaerator of main electrical heating line. Into steam-gas mixture, cooled down for generation of low pressure steam, irrigation water is injected, steam component of this steam-gas mixture is condensed, formed condensate is separated and then drained to tank for separated water. Least portion of separated water is used as nutritious water for generation of low pressure steam. Heat of most portion of separated water is used to heat up softened nutritious water, which is then deaerated and sent to heating network of open thermal system of main electrical heating line. Irrigation water cooled down during the process is fed for condensation of steam in steam-gas mixture.

EFFECT: higher efficiency.

2 dwg

FIELD: power engineering.

SUBSTANCE: system has boiler, steam turbine, electric generator, deaerator and feeding pump, and additionally has steam-gas turbine plant block with low pressure burning chamber, steam-gas mixture heat utilization block and block for using separated water. Block for utilization of heat of steam-gas mixture has utilization boiler with steam generator of high pressure and additional low-pressure steam generator. Block for using separated water via low pressure nutritious water pipeline is connected to input of low pressure steam generator of utilization boiler and via irrigation water pipeline is connected to irrigation device of steam-gas mixture heat utilization block. Input of high pressure steam generator of utilization boiler is connected via steam-gas mixture pipeline to output of steam-gas turbine plant. Low-pressure steam generator of utilization boiler is connected via low-pressure steam pipeline to additional combustion chamber of gas-steam turbine plant. Block for using separated water via pipelines for low-pressure nutritious water, irrigation water and separated water is connected to steam-gas mixture heat utilization block, and via softened heated and deaerated nutritious water pipeline - to base heat and electricity main line. High-pressure steam generator is connected via high-pressure nutritious water pipeline and high-pressure steam pipeline to base main line.

EFFECT: higher efficiency.

2 dwg

FIELD: power engineering.

SUBSTANCE: system has boiler, steam turbine, electric generator, deaerator, feeding pump, and is additionally provided with gas-steam turbine plant block having low-pressure combustion chamber, steam-gas mixture heat utilization block and separated water utilization block. Steam-gas mixture heat utilization block has utilization boiler with high-pressure steam generator and additional low-pressure steam generator. Block for using separated water via low-pressure nutritious water pipeline is connected to low-pressure steam generator of utilization boiler and via irrigation water pipeline is connected to irrigation device of steam-gas mixture heat utilization block. Input of high-pressure steam generator of utilization boiler is connected by steam-gas mixture pipeline to output of steam-gas turbine plant. Low-pressure steam generator of utilization boiler is connected via low-pressure steam generator to additional combustion chamber of steam-gas turbine plant. Block for using separated water via pipelines for low-pressure nutritious water, irrigation water and separated water is connected to block for utilization of steam-gas mixture heat and via pipelines for cooled down and heated network water - to base main line. High-pressure steam generator is connected via high-pressure nutritious water pipeline and high-pressure steam pipeline to base main line.

EFFECT: higher efficiency.

2 dwg

Power station // 2259484

FIELD: power engineering.

SUBSTANCE: power station has thermal turbine with steam ducts, connected along heating environment to heating devices and enabled in heating environment into network pipeline network heaters, deaerator with pipelines for steam exhaust, source water and heating agent - overheated water, connected by pipeline for deaerated feeding water to reverse network pipeline, source water heater, enabled in pipeline for source water, to which heating environment pipeline is connected. Station is provided with pH adjuster of feeding water of heat network, which is connected to pH sensor of deaerated feeding water and to adjusting organs on pipeline of heating environment of heater of source water and steam exhaust pipeline.

EFFECT: higher reliability, lower costs, higher efficiency.

1 dwg

FIELD: power engineering.

SUBSTANCE: method includes heating grid water in grid heaters by steam of heating ducts of thermal turbine, feeding water of heating grid prior to feeding into reverse grid pipeline is deaerated, after that source and overheated water is fed into deaerator. Preservation of given concentration of solved carbon dioxide in deaerated feeding water is performed by consecutive adjustment of source water temperature and steam flow, while in case of increase of concentration of solved carbon dioxide relatively to given value, firstly, temperature of source water is increased, and then if necessary flow of steam is increased, and, vice versa, in case of decrease of concentration of carbon dioxide relatively to given value firstly flow of steam is decreased, and then temperature of source water is lowered.

EFFECT: higher efficiency, lower costs.

1 dwg

Power station // 2259482

FIELD: power engineering.

SUBSTANCE: power station has thermal turbine with steam ducts, grid heaters connected via heating environment to grid pipeline, deaerator with steam pipelines, source water and heating agent - overheated water pipelines, connected by deaerated feeding water pipeline to reverse grid pipeline, source water heater, enabled in pipeline of source water, to which heating environment pipeline is connected. Station is provided with adjuster of content of solved oxygen in feeding water of heating grid, which is connected to delay sensor of solved oxygen in deaerated feeding water and to adjusting organs on pipeline of heating environment of heater of source water and steam pipeline.

EFFECT: higher reliability, higher efficiency.

1 dwg

Cogeneration system // 2252322

FIELD: thermal engineering; district heating from heat and power cogeneration systems.

SUBSTANCE: proposed system has extraction and condensing turbines, their waste steam cooling systems, heat pump units, peak heaters, and heat networks integrated by means of common delivery-water circuit so that common flow of return water is divided into parallel flows, each functioning as low-potential heat flow for heat-pump stations; each of heat-pump units of heat-pump station parallel-connected along delivery water flow affords same water cooling thereby providing for using identical design and thermodynamic cycles of heat-pump units; these thermodynamic cycles include two isobars (heat inlet and outlet) and two polytropes (working medium compression in compressor and expansion in turbine); in addition to recovered waste heat of turbine delivery water is heated by trash burning heat obtained by two alternative ways: for cogeneration power station situated outside the populated area it services incinerating plant heats water discharged from this power station which enables increasing power generated by its turbines, and when cogeneration station is located within populated area it services, water is heated downstream of condensing turbines which enhances power output of the latter.

EFFECT: enhanced competitive strength of district heating cogeneration system.

1 cl, 2 dwg

The invention relates to the production of electric and thermal energy and can be used for cogeneration combined-cycle plants with heat recovery boilers (PHOKU)

The invention relates to the field of energy and can be used for heat recovery in thermal and nuclear power stations

Cogeneration system // 2252322

FIELD: thermal engineering; district heating from heat and power cogeneration systems.

SUBSTANCE: proposed system has extraction and condensing turbines, their waste steam cooling systems, heat pump units, peak heaters, and heat networks integrated by means of common delivery-water circuit so that common flow of return water is divided into parallel flows, each functioning as low-potential heat flow for heat-pump stations; each of heat-pump units of heat-pump station parallel-connected along delivery water flow affords same water cooling thereby providing for using identical design and thermodynamic cycles of heat-pump units; these thermodynamic cycles include two isobars (heat inlet and outlet) and two polytropes (working medium compression in compressor and expansion in turbine); in addition to recovered waste heat of turbine delivery water is heated by trash burning heat obtained by two alternative ways: for cogeneration power station situated outside the populated area it services incinerating plant heats water discharged from this power station which enables increasing power generated by its turbines, and when cogeneration station is located within populated area it services, water is heated downstream of condensing turbines which enhances power output of the latter.

EFFECT: enhanced competitive strength of district heating cogeneration system.

1 cl, 2 dwg

Power station // 2259482

FIELD: power engineering.

SUBSTANCE: power station has thermal turbine with steam ducts, grid heaters connected via heating environment to grid pipeline, deaerator with steam pipelines, source water and heating agent - overheated water pipelines, connected by deaerated feeding water pipeline to reverse grid pipeline, source water heater, enabled in pipeline of source water, to which heating environment pipeline is connected. Station is provided with adjuster of content of solved oxygen in feeding water of heating grid, which is connected to delay sensor of solved oxygen in deaerated feeding water and to adjusting organs on pipeline of heating environment of heater of source water and steam pipeline.

EFFECT: higher reliability, higher efficiency.

1 dwg

FIELD: power engineering.

SUBSTANCE: method includes heating grid water in grid heaters by steam of heating ducts of thermal turbine, feeding water of heating grid prior to feeding into reverse grid pipeline is deaerated, after that source and overheated water is fed into deaerator. Preservation of given concentration of solved carbon dioxide in deaerated feeding water is performed by consecutive adjustment of source water temperature and steam flow, while in case of increase of concentration of solved carbon dioxide relatively to given value, firstly, temperature of source water is increased, and then if necessary flow of steam is increased, and, vice versa, in case of decrease of concentration of carbon dioxide relatively to given value firstly flow of steam is decreased, and then temperature of source water is lowered.

EFFECT: higher efficiency, lower costs.

1 dwg

Power station // 2259484

FIELD: power engineering.

SUBSTANCE: power station has thermal turbine with steam ducts, connected along heating environment to heating devices and enabled in heating environment into network pipeline network heaters, deaerator with pipelines for steam exhaust, source water and heating agent - overheated water, connected by pipeline for deaerated feeding water to reverse network pipeline, source water heater, enabled in pipeline for source water, to which heating environment pipeline is connected. Station is provided with pH adjuster of feeding water of heat network, which is connected to pH sensor of deaerated feeding water and to adjusting organs on pipeline of heating environment of heater of source water and steam exhaust pipeline.

EFFECT: higher reliability, lower costs, higher efficiency.

1 dwg

FIELD: power engineering.

SUBSTANCE: system has boiler, steam turbine, electric generator, deaerator, feeding pump, and is additionally provided with gas-steam turbine plant block having low-pressure combustion chamber, steam-gas mixture heat utilization block and separated water utilization block. Steam-gas mixture heat utilization block has utilization boiler with high-pressure steam generator and additional low-pressure steam generator. Block for using separated water via low-pressure nutritious water pipeline is connected to low-pressure steam generator of utilization boiler and via irrigation water pipeline is connected to irrigation device of steam-gas mixture heat utilization block. Input of high-pressure steam generator of utilization boiler is connected by steam-gas mixture pipeline to output of steam-gas turbine plant. Low-pressure steam generator of utilization boiler is connected via low-pressure steam generator to additional combustion chamber of steam-gas turbine plant. Block for using separated water via pipelines for low-pressure nutritious water, irrigation water and separated water is connected to block for utilization of steam-gas mixture heat and via pipelines for cooled down and heated network water - to base main line. High-pressure steam generator is connected via high-pressure nutritious water pipeline and high-pressure steam pipeline to base main line.

EFFECT: higher efficiency.

2 dwg

FIELD: power engineering.

SUBSTANCE: system has boiler, steam turbine, electric generator, deaerator and feeding pump, and additionally has steam-gas turbine plant block with low pressure burning chamber, steam-gas mixture heat utilization block and block for using separated water. Block for utilization of heat of steam-gas mixture has utilization boiler with steam generator of high pressure and additional low-pressure steam generator. Block for using separated water via low pressure nutritious water pipeline is connected to input of low pressure steam generator of utilization boiler and via irrigation water pipeline is connected to irrigation device of steam-gas mixture heat utilization block. Input of high pressure steam generator of utilization boiler is connected via steam-gas mixture pipeline to output of steam-gas turbine plant. Low-pressure steam generator of utilization boiler is connected via low-pressure steam pipeline to additional combustion chamber of gas-steam turbine plant. Block for using separated water via pipelines for low-pressure nutritious water, irrigation water and separated water is connected to steam-gas mixture heat utilization block, and via softened heated and deaerated nutritious water pipeline - to base heat and electricity main line. High-pressure steam generator is connected via high-pressure nutritious water pipeline and high-pressure steam pipeline to base main line.

EFFECT: higher efficiency.

2 dwg

FIELD: power engineering.

SUBSTANCE: heat exhausted from additional steam-gas turbine plant is utilized to generated high pressure steam and additionally low pressure steam. High pressure steam is sent to and expanded in thermal steam turbine. Low pressure steam is sent to additional low pressure combustion chamber of steam-gas turbine plant, to where also additional fuel is directed, temperature of steam-gas mixture is set mainly at level close to 900°C and expanded in low pressure steam-gas turbine. Nutritious water for generation of high pressure steam is taken from high pressure deaerator of main electrical heating line. Into steam-gas mixture, cooled down for generation of low pressure steam, irrigation water is injected, steam component of this steam-gas mixture is condensed, formed condensate is separated and then drained to tank for separated water. Least portion of separated water is used as nutritious water for generation of low pressure steam. Heat of most portion of separated water is used to heat up softened nutritious water, which is then deaerated and sent to heating network of open thermal system of main electrical heating line. Irrigation water cooled down during the process is fed for condensation of steam in steam-gas mixture.

EFFECT: higher efficiency.

2 dwg

FIELD: power engineering.

SUBSTANCE: method includes utilization of heat exhausted from additional steam-gas turbine plant for generation of high pressure steam and additional low pressure steam. High pressure steam is sent to and expanded in thermal steam turbine. Low pressure steam is fed to additional low pressure combustion chamber of steam-gas turbine plant, additional fuel is sent same way as steam, and temperature of steam-gas mixture is set mainly at level close to 900°C and it is expanded in low pressure steam-gas turbine. Nutritious water for generation of high pressure steam is fed from deaerator of high pressure heating and electrical line. Into steam-gas mixture, cooled down during generation of low pressure steam, irrigation water is injected, steam component of this steam-gas mixture is condensed, formed condensate is separated and drained into tank for separated water, from which cooled down irrigation water is fed for condensation of steam in steam-gas mixture. Least portion of separated water is used as nutritious water for generation of low pressure steam. Heat of most portion of separated water is used to heat a portion of network water from closed thermal system of main electrical and heating line.

EFFECT: higher efficiency.

2 dwg

FIELD: heat power engineering.

SUBSTANCE: according to proposed method system water is heated in system heaters by steam of heating extractions of extraction turbine. Make up water of heat supply system is deaerated before delivering into return pipeline. For this purpose source and overheated water is delivered into deaerator. Maintaining of preset concentration of oxygen dissolved in deaerated make up water is provided by successive regulation of temperature of source water and rate of flash steam. If concentration of dissolved oxygen exceeds preset value, first, temperature of source water is raised and then, if necessary, rate of flash steam is increased and on the contrary, if concentration of oxygen is lower than preset value, first rate of flash steam is reduced and then temperature of source water.

EFFECT: increased efficiency and economy of thermal power station.

1 dwg

FIELD: power and heat generation.

SUBSTANCE: proposed power and heating plant with open power and heat supply system including boiler unit, steam turbine, deaerator and feed pump includes steam-gas turbine plant unit with low-pressure afterburning chamber, steam gas mixture heat recovery unit containing recovery boiler with high-and-pressure steam generators, spraying device, gas cooler-condenser and separated water utilization unit. Separated water utilization unit is connected with input of low-pressure steam generator of recovery boiler through water softening set and deaerator. Spraying device is connected with raw water softening device of power and heating plant. Input of high-pressure steam generator of recovery boiler is connected with output of steam-gas-turbine plant. Low-pressure steam generator of recovery boiler is connected with additional afterburning chamber of steam-gas turbine plant. Separated water utilization unit is connected by pipeline of softened and deaerated low-pressure feed water with steam-gas mixture heat recovery unit and pipeline of softened, heated and deaerated make-up water with open power and heat supply system. High-pressure steam generator is connected by feed water and steam pipelines with power and heating plant.

EFFECT: provision of effective modernization of steam turbine power and heating plants with increase of power and economy.

2 dwg

Up!