Method for determining parameters of three-dimensional object

FIELD: measuring equipment.

SUBSTANCE: method includes lighting object by collimated parallel beam of coherent monochromatic light, directed at angle of raising of screw surface relatively to object axis, as which object with screw surface is used, receiving optical image of its profile and following processing of received profile of image to perform further calculations of its parameters, while lighting of object is performed concurrently on two portions by collimated parallel beams of coherent monochromatic light, directed at raising angle of screw surface relatively to object axis, while these two beams are positioned symmetrically relatively to longitudinal axis of object and two images of said profile are received, mutual position of separate elements in which does not depend on presence of vibrations and shaking.

EFFECT: higher quality.

1 dwg, 1 ex

 

The invention relates to a method of determining parameters of a three-dimensional object is the development of technical solutions for the Russian bid No. 2000110173/12.

There is a method of determining parameters of a three-dimensional object, which consists in the illumination of the object collimated parallel beam of coherent monochromatic light directed at an angle of ascent of helical surfaces relative to the axis of the object, which is used as an object with a helical surface, obtaining an optical image of his profile and subsequent processing of the received profile image for further calculation of its parameters, see the patent of Russia №2171181, CL 44 In 1/00, 27.07.2001.

The disadvantage of this method is that when vibration or shaking of the studied profile measurement error increases sharply.

The technical result of the invention is to improve the accuracy of determining the parameters of an object in terms of vibration and shaking.

This is achieved by the fact that in the proposed method of determination of parameters of a three-dimensional object, which consists in the illumination of the object collimated parallel beam of coherent monochromatic light directed at an angle of ascent of helical surfaces relative to the axis of the object, which is used as an object with a helical surface, the floor is within the optical image of his profile and subsequent processing of the received profile image for further calculation of its parameters, moreover, the illumination of the object is carried out simultaneously on two sections of the collimated parallel beam of coherent monochromatic light directed at an angle of ascent of helical surfaces relative to the axis of the object, and these two beams have symmetrically relative to the longitudinal axis of the object, get two images in the specified profile, the mutual arrangement of the individual elements are not dependent on the presence of vibrations and shaking.

The drawing shows a diagram of an apparatus that implements the method. The device comprises an emitter 1, the collimator lenses 2, the object holder (screw) 3, the projection system 4, 6 in the focal plane of the lens which has a field diaphragm 5, the photodetector made in the form of the CCD sensor 7, the output of which is connected to the input of the processing unit 8.

The proposed method of determination of parameters of a three-dimensional object implemented as follows.

Example. A three-dimensional object light illuminator 1 through the collimator lens 2 parallel beam of coherent monochromatic light directed at an angle of ascent of helical surfaces (lines) relative to the axis of the object (screw)fixed in the holder 3.

Formed on the CCD matrix 7 is an optical image of the profile of the object (thread) to ensure a constant linear increase within the whole Olya image using a projection lens through a specially designed structure, the projection system 4, 6, eliminating distortion, and performing spatial filtering of the illuminating beam through the aperture 5. Signals from the photodetector 7 are received at the processing unit 8, which calculate (determine) the parameters of the object (thread).

Parameters (thread) is determined from the obtained at the CCD matrix of the shadow projection profile (thread) by contouring the image and the subsequent selection of geometrical parameters with the help of special software.

Thus, the invention improves the accuracy of determining the parameters of the object.

Industrial applicability.

The invention can be used in various branches of engineering, in particular in the manufacture of copies, in the manufacture of carved products (with thread).

The method of determining parameters of a three-dimensional object, which consists in the illumination of the object collimated parallel beam of coherent monochromatic light directed at an angle of ascent of helical surfaces relative to the axis of the object, which is used as an object with a helical surface, obtaining an optical image of his profile and subsequent processing of the received profile image for further calculation of its parameters, characterized in that the illumination of the object is carried out simultaneously on two sites Collin Rovaniemi parallel beams of coherent monochromatic light, directed at an angle of ascent of helical surfaces relative to the axis of the object, and these two beams have symmetrically relative to the longitudinal axis of the object and get two images in the specified profile, the mutual arrangement of the individual elements are not dependent on the presence of vibrations and shaking.



 

Same patents:

FIELD: the invention refers to measuring technique.

SUBSTANCE: the mode of measuring the form of an object includes formation of a light line on the surface of the object with the aid of the light-emitting system lying in the preset cross-section of the object, getting the image of the light line, its processing and definition of the coordinates of the profile of the cross-section of the object. AT that collateral light lines are formed on the surface by turns with the aid of two light-emitting systems illuminating the surface in preset cross-section of the object at different angles in its every point, images of light lines are received. On each of them sites are revealed. A resultant image is compiled out of the images of the indicated sites. According to this resultant image the coordinates of the profile of the cross-section of the object are determined. The arrangement for measuring the form of the object has a light-emitting system optically connected with a photoreceiver and a computing unit. It also has one additional light-emitting system optically connected with a photoreceiver and a commuting unit connected with its input to the computing unit, and with its output - with every light-emitting system. Optical axles of light-emitting system are placed in one plane and located to each other at an angle equal 5-800.

EFFECT: the invention increases accuracy of measuring by way of excluding the distortions of the zone of influence on the results of measuring.

13 cl, 5 dwg

FIELD: measuring instruments.

SUBSTANCE: the interferometer for controlling of the form of prominent, concave spherical and flat surfaces of large-sized optical components has a source of monochromatic radiation, a collimator and an objective, one after another located a beam divider, a flat mirror and an aplanatic meniscus with a reference surface and also an observation branch located behind the beam divider in beam return and a working branch consisting out of a spherical mirror with a compensator which form a focusing system. Depending of the form of a controlled surface focusing of the working branch of the interferometer is executed at replacing the compensator and the basic block of the interferometer which has an illuminating branch. A beam divider, a flat mirror, an aplanatic meniscus and an observation branch relative to a fully stabilized spherical mirror along an optical axis on such a distance at which the beams reflected from the spherical mirror fall on the controlled surface transversely to its surface.

EFFECT: expansion of nomenclature of controlled surfaces, decreasing large-sized dimensions of the interferometer.

2 cl, 3 dwg

FIELD: measuring engineering.

SUBSTANCE: method comprises setting the article to be tested on the working table, moving the nonflatness meter, determining the amplitude of nonflatness, and determining coefficients of nonflatness. The device comprises source of light, multielement photodetector, objective, and computer.

EFFECT: enhanced reliability.

5 cl, 7 dwg

FIELD: measuring arrangements.

SUBSTANCE: device comprises unmovable base provided with the first cantilever, two carriages provided with drives controllable with a computer, pickup of linear movements, arrangement for mounting blade and first measuring channel connected with the computer. The first carriage is mounted on the unmovable base and is made for permitting movement parallel to the X-axis. The first measuring passage is defined by the optoelectronic head and units secured to the unmovable base, third carriage provided with an actuator controlled by a computer and pickup of linear displacements, second measuring channel, first and scone markers of the blade with actuating members controlled by a computer, arrangement setting the blade mounted on the first carriage and made for permitting rigid orientation of the blade in the vertical plane, second and third carriages arranged on the first and second cantilevers, respectively, and made for permitting movement parallel to the Z-axis, first and second markers of the blade, fiber optic heads of the first and second measuring channels arranged on the second and third carriages from the both sides of the study blade. The objectives of the fiber optic heads are mounted for permitting triangulation link of the photodetector with the sourced through the blade surface of the blade to be tested.

EFFECT: enhanced efficiency.

6 cl, 7 dwg

FIELD: railway transport; instrument technology.

SUBSTANCE: proposed wear checking system contains optical receiving projection system and converting-and-calculating unit. It includes also car position pickup and car counter whose outputs are connected to inputs to inputs of converting-ands-calculated unit. Optical receiving projection system consists of sets of stereo modules. Rigid structure of each module includes two CCD television cameras and lighting unit. Outputs of stereomodules are connected to corresponding inputs of converting-and-calculating unit. Stereomodules are rigidly installed relative to each other.

EFFECT: enlarged operating capabilities.

3 cl, 2 dwg

The invention relates to information-measuring technique and can be used for contactless measurement of geometrical parameters of the compressor, turbine blades, molds, moulds and tooling in the manufacture of gas turbine engines (GTE), templates, membranes, machining tool, etc

The invention relates to a geodetic instrument and can be used to control the straightness of suspensions of fuel assemblies for nuclear power plants with RBMK-type reactors

The invention relates to measuring technique and can be used for precise non-contact monitoring form concave surfaces (uncoated and mirror) of the second order in laboratory and industrial conditions optical instrumentation

The invention relates to opto-electronic methods of determining plantamnesty sheet material, such as metal, and may find application in rolling mills metallurgical production and production of flat-rolled technologies

FIELD: railway transport; instrument technology.

SUBSTANCE: proposed wear checking system contains optical receiving projection system and converting-and-calculating unit. It includes also car position pickup and car counter whose outputs are connected to inputs to inputs of converting-ands-calculated unit. Optical receiving projection system consists of sets of stereo modules. Rigid structure of each module includes two CCD television cameras and lighting unit. Outputs of stereomodules are connected to corresponding inputs of converting-and-calculating unit. Stereomodules are rigidly installed relative to each other.

EFFECT: enlarged operating capabilities.

3 cl, 2 dwg

FIELD: measuring arrangements.

SUBSTANCE: device comprises unmovable base provided with the first cantilever, two carriages provided with drives controllable with a computer, pickup of linear movements, arrangement for mounting blade and first measuring channel connected with the computer. The first carriage is mounted on the unmovable base and is made for permitting movement parallel to the X-axis. The first measuring passage is defined by the optoelectronic head and units secured to the unmovable base, third carriage provided with an actuator controlled by a computer and pickup of linear displacements, second measuring channel, first and scone markers of the blade with actuating members controlled by a computer, arrangement setting the blade mounted on the first carriage and made for permitting rigid orientation of the blade in the vertical plane, second and third carriages arranged on the first and second cantilevers, respectively, and made for permitting movement parallel to the Z-axis, first and second markers of the blade, fiber optic heads of the first and second measuring channels arranged on the second and third carriages from the both sides of the study blade. The objectives of the fiber optic heads are mounted for permitting triangulation link of the photodetector with the sourced through the blade surface of the blade to be tested.

EFFECT: enhanced efficiency.

6 cl, 7 dwg

FIELD: measuring engineering.

SUBSTANCE: method comprises setting the article to be tested on the working table, moving the nonflatness meter, determining the amplitude of nonflatness, and determining coefficients of nonflatness. The device comprises source of light, multielement photodetector, objective, and computer.

EFFECT: enhanced reliability.

5 cl, 7 dwg

FIELD: measuring instruments.

SUBSTANCE: the interferometer for controlling of the form of prominent, concave spherical and flat surfaces of large-sized optical components has a source of monochromatic radiation, a collimator and an objective, one after another located a beam divider, a flat mirror and an aplanatic meniscus with a reference surface and also an observation branch located behind the beam divider in beam return and a working branch consisting out of a spherical mirror with a compensator which form a focusing system. Depending of the form of a controlled surface focusing of the working branch of the interferometer is executed at replacing the compensator and the basic block of the interferometer which has an illuminating branch. A beam divider, a flat mirror, an aplanatic meniscus and an observation branch relative to a fully stabilized spherical mirror along an optical axis on such a distance at which the beams reflected from the spherical mirror fall on the controlled surface transversely to its surface.

EFFECT: expansion of nomenclature of controlled surfaces, decreasing large-sized dimensions of the interferometer.

2 cl, 3 dwg

FIELD: the invention refers to measuring technique.

SUBSTANCE: the mode of measuring the form of an object includes formation of a light line on the surface of the object with the aid of the light-emitting system lying in the preset cross-section of the object, getting the image of the light line, its processing and definition of the coordinates of the profile of the cross-section of the object. AT that collateral light lines are formed on the surface by turns with the aid of two light-emitting systems illuminating the surface in preset cross-section of the object at different angles in its every point, images of light lines are received. On each of them sites are revealed. A resultant image is compiled out of the images of the indicated sites. According to this resultant image the coordinates of the profile of the cross-section of the object are determined. The arrangement for measuring the form of the object has a light-emitting system optically connected with a photoreceiver and a computing unit. It also has one additional light-emitting system optically connected with a photoreceiver and a commuting unit connected with its input to the computing unit, and with its output - with every light-emitting system. Optical axles of light-emitting system are placed in one plane and located to each other at an angle equal 5-800.

EFFECT: the invention increases accuracy of measuring by way of excluding the distortions of the zone of influence on the results of measuring.

13 cl, 5 dwg

FIELD: measuring equipment.

SUBSTANCE: method includes lighting object by collimated parallel beam of coherent monochromatic light, directed at angle of raising of screw surface relatively to object axis, as which object with screw surface is used, receiving optical image of its profile and following processing of received profile of image to perform further calculations of its parameters, while lighting of object is performed concurrently on two portions by collimated parallel beams of coherent monochromatic light, directed at raising angle of screw surface relatively to object axis, while these two beams are positioned symmetrically relatively to longitudinal axis of object and two images of said profile are received, mutual position of separate elements in which does not depend on presence of vibrations and shaking.

EFFECT: higher quality.

1 dwg, 1 ex

FIELD: measurement technology.

SUBSTANCE: device for automatic measuring coordinates of string plummets of hydraulic structures has reflecting screen, illumination source, two optical systems each of which is blocked with corresponding electro-optical array, device for measuring coordinate of string's projection, digital serial communication desk. Device also has resolver that has in turn two input serial communication desks, which have their outputs connected with controller, and indicator.

EFFECT: high precision of measurement of coordinates of string plummets.

2 cl, 1 dwg

FIELD: measuring engineering.

SUBSTANCE: method comprises directing a coherent light beam at the surface to be tested, producing and recording interferogram of the light path difference, and processing the interferogram. The tested and reference surfaces are exposed to the second coherent light beam, and the second interferogram of the light path difference is created. The second interferogram is provided with the additional light path difference with respect to that of the first interferogram, which is equal to the one fourth of the beam wavelength. The light path difference of the first interferogram is determined at specific points of the surface to be tested from the signal of illumination in one of two interferograms. The device comprises source of coherent light, first filter-condenser, first and second light-splitting units, interferometer composed of tested and reference surfaces, unit for measuring optical length of the beam, first projecting unit, recording unit, observing unit, and unit for processing the interferogram. The device also has two light-splitting units between which two pairs of transparent diffraction lattices are interposed. The filter-condenser, the second light-splitting unit, and λ/4 lattice are arranged in series in the direction of the beam.

EFFECT: enhanced precision.

4 cl, 8 dwg

FIELD: measuring engineering.

SUBSTANCE: method comprises setting the article to be controlled on the movable traverse gear having two extent of freedom, illuminating the surface of the article by light, receiving the light reflected from the surface of the article with the use of a photodetector, moving the article parallel to the X-axis, determining coordinates of the light spots on the photodetectors of the current values of the heights of the article shape, locking the position of the table, scanning the main section of the article shape, comparing it with the reference one , and determining the quality of the article shape. The main section is scanned by moving the article parallel to the Y-axis, when the traverse gear is in a position determined from the formula proposed. The device comprises unmovable horizontal base, vertical cantilever secured to the base, unit for measuring the article shape mounted on the vertical cantilever, two carriages that define a traverse gear and provided with the individual drives controlled by a computer, and pickup of linear movements. The first carriage moves parallel to the X-axis, and the second carriage is mounted on the first one and moves parallel Y-axis.

EFFECT: improved quality of control.

4 cl, 4 dwg

FIELD: measuring engineering.

SUBSTANCE: device comprises housing that receives electric lamp, toroidal lens, conical mirror of ring vision, lens, and scaling grid arranged in series. The device is additionally provided with aperture with ring and central round recesses positioned in front of the lamp, ring and round color filters mounted in front of the recesses, and second mirror cone positioned behind the aperture. The top of the cone points to the lamp. The semi-transparent mirror, color filter, measuring grid, and first TV camera are arranged along the longitudinal axis of the housing behind the lens. The second color filter, second measuring grid, and second TV camera are arranged in series along the perpendicular to the axis of the housing behind the lens.

EFFECT: expanded functional capabilities.

3 dwg

Up!