Method for preparing n-substituted lactams

FIELD: chemistry of lactams' derivatives.

SUBSTANCE: the present innovation deals with obtaining N-(2-chloroalkyl)- and N-alkyl-aromatic derivatives of lactams of the following general formula: , where R=H, Cl, R'=(CH2)3, (CH2)5 which could be modifiers of unsaturated carbon-chain caoutchoucs and rubber mixtures based upon them. The suggested method for obtaining the mentioned N-substituted lactams deals with combining N-chlorolactams and allyl benzene, moreover, as N-lactams one should apply either N-chlorobutyrolactam or N-chlorocaprolactam. The process should be carried out at molar ratio of N-chlorolactam to allyl benzene being equal to 1-1.15:1, at availability of a catalyzer as mono-tertiary-butylperoxy-α-methylmethoxyethoxyethyl ether of ethylene glycol taken at the quantity of 0.4-4.0% weight, in the medium of inert solvent, for example, chlorobenzene at 100-125° C for about 15-20 min. The innovation enables to shorten terms of reaction by 20-30 times, simplify the way for obtaining target products and widen the assortment of the obtained compounds, as well.

EFFECT: higher efficiency.

 



 

Same patents:
The invention relates to a method of evaporation aminonitriles and water in the synthesis of lactam by the reaction between aminonitriles and water in the vapor phase in the presence of a catalyst of aluminum hydroxide

The invention relates to the protection of building materials and structures from the biodegradation of microscopic mushrooms

The invention relates to acylaminocinnamic derivative of the formula (I), where R denotes phenyl which is not substituted or may be substituted with halogen, alkyl, trifluoromethyl, hydroxy and alkoxygroup, R1is hydrogen, alkyl, R2is hydrogen, alkyl or phenyl which is not substituted or may be substituted with halogen, alkyl, trifluoromethyl, hydroxy and alkoxygroup, R3is phenyl which is not substituted or may be substituted with halogen, alkyl, trifluoromethyl, hydroxy and alkoxygroup, or represents naphthyl, lH-indol-3-yl or 1-alcheringa-3-yl, R4' and R4"is hydrogen, alkyl, and one of the radicals R4' and R4"is hydrogen, and R5- cycloalkyl, D-azacycloheptan-2-he-3-yl or L-azacycloheptan-2-he-3-yl, or its salt

The invention relates to the production of aliphatic lactams from dinitriles
The invention relates to the production of caprolactam, which is used to produce polymeric products

The invention relates to the production of aliphatic lactams, in particular E-caprolactam used in the production of polyamides

The invention relates to the production of modified layered silicates and can be used in the manufacture of paints, coating of enamel, plaster, household paints, ceramic industry for obtaining anhydrous molding compounds, as active fillers in polymers and rubbers, for lubricating and cooling fluids, drilling fluids oil-based

The invention relates to methods for caprolactamate sodium, used as catalyst for the anionic polymerization of lactams, for receiving polycaproamide and its copolymers

FIELD: chemistry of lactams' derivatives.

SUBSTANCE: the present innovation deals with obtaining N-(2-chloroalkyl)- and N-alkyl-aromatic derivatives of lactams of the following general formula: , where R=H, Cl, R'=(CH2)3, (CH2)5 which could be modifiers of unsaturated carbon-chain caoutchoucs and rubber mixtures based upon them. The suggested method for obtaining the mentioned N-substituted lactams deals with combining N-chlorolactams and allyl benzene, moreover, as N-lactams one should apply either N-chlorobutyrolactam or N-chlorocaprolactam. The process should be carried out at molar ratio of N-chlorolactam to allyl benzene being equal to 1-1.15:1, at availability of a catalyzer as mono-tertiary-butylperoxy-α-methylmethoxyethoxyethyl ether of ethylene glycol taken at the quantity of 0.4-4.0% weight, in the medium of inert solvent, for example, chlorobenzene at 100-125° C for about 15-20 min. The innovation enables to shorten terms of reaction by 20-30 times, simplify the way for obtaining target products and widen the assortment of the obtained compounds, as well.

EFFECT: higher efficiency.

FIELD: chemistry.

SUBSTANCE: described is a method of obtaining a catalyst of an anionic ε-capralactam polymerisation by its direct interaction with an alkali metal compound in the presence of an aprotic solvent, removed after reaction completion, with a reaction being carried out at a temperature not lower than 60°C, with hydroxides or their combinations being applied as alkali metal compounds, and as active diluents - aliphatic hydrocarbons with the number of carbon atoms in the interval 5-9 or their mixtures, which form with a reaction product - water heterogenic azeotropes, removed in the course of conversion.

EFFECT: simplification and intensification of the catalyst obtaining process, increase of the catalyst activity.

2 cl, 1 tbl, 3 ex

FIELD: chemistry.

SUBSTANCE: invention relates to a catalyst for producing mould polyamides comprising a) at least, one lactamate, b) at least, one salt of a heteroatom-substituted organic acid selected from the group consisting of aminocaproates and/or amino-laurates of alkali and/or alkaline-earth metals and, if necessary c) lactam or a mixture of several lactams. The invention also relates to the method of producing the claimed catalyst, mould polyamide and the method of its production.

EFFECT: improving the quality of mould polyamides.

9 cl, 1 tbl, 1 ex

FIELD: chemistry of lactams' derivatives.

SUBSTANCE: the present innovation deals with obtaining N-(2-chloroalkyl)- and N-alkyl-aromatic derivatives of lactams of the following general formula: , where R=H, Cl, R'=(CH2)3, (CH2)5 which could be modifiers of unsaturated carbon-chain caoutchoucs and rubber mixtures based upon them. The suggested method for obtaining the mentioned N-substituted lactams deals with combining N-chlorolactams and allyl benzene, moreover, as N-lactams one should apply either N-chlorobutyrolactam or N-chlorocaprolactam. The process should be carried out at molar ratio of N-chlorolactam to allyl benzene being equal to 1-1.15:1, at availability of a catalyzer as mono-tertiary-butylperoxy-α-methylmethoxyethoxyethyl ether of ethylene glycol taken at the quantity of 0.4-4.0% weight, in the medium of inert solvent, for example, chlorobenzene at 100-125° C for about 15-20 min. The innovation enables to shorten terms of reaction by 20-30 times, simplify the way for obtaining target products and widen the assortment of the obtained compounds, as well.

EFFECT: higher efficiency.

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to technology for preparing caprolactam by the cyclization reaction of derivatives of aminocaproic acid. Method is carried out by cyclizing hydrolysis of compound chosen from the group comprising aminocaproic acid esters or amides, or their mixtures. The process is carried out in the presence of water, in vapor phase at temperature 200-450°C in the presence of a solid catalyst comprising of aluminum oxide that comprises at least one macroporosity with pores volume corresponding to pores with diameter above 500 Å taken in the concentration 5 ml/100 g of above. Preferably, the specific square of catalyst particles is above 10 m2/g and the total volume of pores is 10 ml/100 g or above wherein pores volume corresponds to pores with diameter above 500 Å is 10 ml/100 g or above. Invention provides improving the process indices due to the improved properties of the solid catalyst.

EFFECT: improved preparing method.

5 cl, 2 ex

FIELD: organic chemistry, medicine, biochemistry, pharmacy.

SUBSTANCE: invention relates to novel azaheterocycles of the general formula (I): possessing inhibitory effect on activity of tyrosine kinase and can be used in treatment of different diseases mediated by these receptors. In compound of the general formula (1) W represents azaheterocycle comprising 6-13 atoms that can be optionally annelated with at least one (C5-C7)-carbocycle and/or possibly annelated with heterocycle comprising 4-10 atoms in ring and comprising at least one heteroatom chosen from oxygen (O), sulfur (S) or nitrogen (N) atom; Ra1 represents a substitute of amino group but not hydrogen atom, such as substituted (C1-C6)-alkyl, possibly substituted aryl and possibly substituted 5-10-membered heterocyclyl comprising at least one heteroatom chosen from O, S or N; Rb represents carbamoyl group -C(O)NHRa wherein Ra represents a substitute of amino group but not hydrogen atom, such as possibly substituted alkyl, possibly substituted aryl, possibly substituted 5-10-membered heterocyclyc comprising at least one heteroatom chosen from O, S or N; Rc represents a substitute of cyclic system, such as possibly substituted (C1-C6)-alkyl, possibly substituted aryl and possibly substituted 5-6-membered heterocyclyl comprising at least one heteroatom chosen from O, S or N; or Rb and Rc form in common aminocyanomethylene group [(=C(NH2)CN], or their pharmaceutically acceptable salts. Also, invention relates to methods for synthesis of these compounds (variants), a pharmaceutical composition, combinatory and focused libraries.

EFFECT: valuable medicinal properties of compounds and pharmaceutical composition, improved methods for synthesis and preparing.

35 cl, 16 sch, 13 tbl, 43 ex

FIELD: chemistry.

SUBSTANCE: invention refers to bengamide derivatives produced by fermented microorganism Myxococcus virescens ST200611 (DSM 15898), to application in cancer therapy and/or prevention, to medical products containing bengamide derivatives, making process of bengamide of formula . In addition, the invention refers to compound of formula .

EFFECT: new bengamide derivatives are characterised with useful biological properties.

15 cl, 7 tbl, 18 ex

FIELD: chemistry.

SUBSTANCE: invention relates to derivatives of 3-aminocaprolactam of formula (I): , where X represents -CO-R1 or -SO2-R2, R1 represents alkyl (with the exception of 5-methylheptanyl and 6-methylheptanyl, where radical R1 is bonded to carbonyl in position 1), halogenalkyl, alkoxy (with the exception of tret-butyloxy), alkenyl, alkinyl or alkylamino radical from 4-20 carbon atoms (for example, from 5-20 carbon atoms, 8-20 carbon atoms, 9-20 carbon atoms, 10-18 carbon atoms, 12-18 carbon atoms, 13-18 carbon atoms, 14-18 carbon atoms, 13-17 carbon atoms) and R2 is alkyl radical from 4-20 carbon atoms (for example, from 5-20 carbon atoms, 8-20 carbon atoms, 9-20 carbon atoms, 10-18 carbon atoms, 12-18 carbon atoms, 13-18 carbon atoms, 14-18 carbon atoms, 13-17 carbon atoms); or to its pharmacologically acceptable salt. Invention also relates to application and pharmacological composition, which has anti-inflammatory activity, based on said compounds.

EFFECT: obtaining new compounds and based on them pharmacological composition, which can be applied for obtaining medications for treatment, relief or prevention of inflammatory disease symptoms.

57 cl, 62 ex

FIELD: chemistry.

SUBSTANCE: present invention relates to a method for synthesis of caprolactam from alkylcyanovalerate which involves bringing alkylcyanovalerate into contact with hydrogen in gaseous state in the presence of a hydrogenation catalyst and a ring formation catalyst, and treatment after condensation of a gaseous stream containing the formed lactam in order to separate ammonium which may be present, the formed alcohol and/or the caprolactam solvent and extraction of caprolactam, where the hydrogenation catalyst includes a metal element or a mixture of metal elements selected from a group containing an active metal element in form of iron, ruthenium, rhodium, iridium, palladium, cobalt, nickel, chromium, osmium and platinum or several metals from this list, and the ring formation catalyst is porous aluminium oxide.

EFFECT: obtaining caprolactam without intermediate separation of alkylaminocaproate.

10 cl, 5 ex, 1 tbl

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to compounds of general formula

where there are R3/R3', R4/R4' and R5/R5' where at least one of either R4/R4' or R5/R5' always represents a fluorine atom, and the other radical values are disclosed in the description.

EFFECT: making the compounds which are γ-secretase inhibitors, and can be effective in treating Alzheimer's disease or advanced cancers, including but not limited to carcinoma of uterine cervix and breast carcinoma and malignant tumours of hematopoietic system.

15 cl, 3 tbl, 18 ex

Up!