A method of treating pain syndromes

 

(57) Abstract:

The invention relates to medicine, and is intended for the treatment of pain syndromes in patients with pathology of the peripheral nervous system. The method is exposed simultaneously by laser radiation in the infrared and incoherent light output in the visible red and the blue part of the spectrum on the projection area of pain when the pulse frequency of the radiation 1-16 Hz. The effect is carried out for 30 seconds - 1.5 min. the Invention allows to increase the efficiency and reduce the time of treatment.

The invention relates to medicine, and is intended for the treatment of pain syndromes in patients with pathology of the peripheral nervous system.

There is a method of treatment of pain syndromes in patients with multiple sclerosis, is the impact on the peripheral nervous system magnetic field, in particular on the surface of the skin in the area of projection of deep pain. The influence exercised by laser radiation 10-25 mW, wavelength 630-890 nm for 4-8 min (see ed.St. The USSR №1076126, class. And 61 In 5/06, 1985).

However, when using methods of electromagnetic and magneto-laser therapy was observed adverse reactions associated with coherently the emission of radiation on the body surface.

There is a method of treatment of purulent wounds by exposure to ultraviolet and infrared range (see ed.St. No. 1600790, class. And 61 No. 5/06, 1990).

However, the continuous generation of the light flux in any part of the spectrum causes damage to cellular structures.

A device for swegefetteree, is the impact of optical (light and color) radiation on the reflex zones, acupuncture points and acupressure points (see RF patent №2074697, And 61 N 39/00, 1997).

However, the device does not provide the combined effect of radiation of different wavelengths in the area of projection of deep pain.

Closest to the claimed is a method of treating pain syndromes impact on reflexogenic zones of the laser radiation of the infrared range and the static magnetic field (see RF patent №2066173, And 61 N 39/00, 1996). A disadvantage of this device is tough and long-lasting effects on the body due to constant exposure.

The technical result of the invention is to simplify the method of treatment of pain syndromes, increasing efficiency and reducing treatment time.

The technical result is achieved prekrasna range and a luminous flux of long-wave and short-wave part of the spectrum on the projection area of deep pain or reflex zones within the 30 - 1.5 min with a frequency of radiation 1-16 Hz.

For this purpose, the method of treatment of pain syndromes using light radiation of optical emitters (LEDs) in the following spectral range: wavelength: 460-470 nm (blue), 660 nm (red), 870-930 nm (infrared radiation). The effect is carried out in a pulsed mode at 1, 4, 8, 16 Hz.

The method of treatment antispasmodic, anti-inflammatory, anti-edema and analgesic action, which leads to resolving the effect, improve the trophic tissue and regenerative and functional properties.

The peculiarity of the method is as follows: radiation exposure mode, the generated luminous flux in the infrared and visible spectrum, simultaneous exposure to radiation spectra of different wavelengths provides a summary of light energy at different depths of the tissue, and therefore the absorption of light occurs at the level of the skin surface (blue) at a depth of 1-1,5 cm (red) and 4-7 cm (infrared radiation) that enhances therapeutic effect of deep pain and shortens the treatment time.

Radiation of each spectrum separately can be used to zocoreffexor what I increases the effectiveness of treatment and reducing treatment time.

When exposed to citerefentry (tsvetopunktury) on the reflex zones of the acupuncture points and acupressure points affected by coherent light flux in the infrared and visible part of the spectrum simultaneously. When duration of exposure for each biologically active point is 30-90 s, and the frequency of alternation of treatments depends on the severity of the disease.

Example 1.

Patient K., aged 60. Diagnosis: cephalalgia. Complaints: within 3 years experience pain in the right orbit, radiating to the right half of the head. Treatment with drugs does not relieve pain. In the ophthalmic study established the following: visual acuity of the right eye is equal to 0.8, the left eye - 0,4, correction glasses vision does not improve. In the lens revealed the initial signs of cataract. The eyelids of the right eye and in the right zygomatic part of the face pasty, moderately edematous. Palpation in the region of the upper internal edge of the right orbit marked a sharp pain.

Conducted one session of treatment simultaneous impact spectrum of different wavelengths (blue, red, and infrared) with frequency driver who was 30 C. After one treatment the pain disappeared, swelling and pastos skin of the eyelids and face also disappeared. Further treatment of pain syndrome, the patient did not need.

Example 2.

Patient K., aged 65. Diagnosis: cephalalgia, hypertensive heart disease, nodular goiter III senior complaints of pain in the area of the left half of the head. Pain iradionet in the left ear, in the region of the mastoid process of the jaw left side of the neck. His disease associates with hypothermia. Pain disturbed within 2 weeks, the treatment was not received, because suffer allergic reactions to the medication and do not tolerate physical therapy.

Treatment carried out the simultaneous effect of different wavelength and modulation frequency pulses 1-4 Hz (blue, red, infrared) on the projection area of pain. The exposure time of 40 C. After two sessions the pain disappeared. Further treatment of pain syndrome, the patient did not need.

Example 3.

Patient I., 55 years. Diagnosis: left neuralgia of the upper branches of the trigeminal nerve and neurotrophic keratitis of the left eye. Complaints: over 15 years experience pain in the left orbit, reduced vision in the left eye. Alongside the two effects 30 with a frequency of 8 Hz. The number of sessions 3. After the first session the pain was gone, decreased injection left eye. After 3 sessions improved vision and decreased swelling of the cornea and its opacity.

Example 4.

Patient I. 49 years. Diagnosis: cardialgia. Complaint: pain in the heart, bearing paroxysmal character. Suffering for 6 months. The exposure was carried out simultaneous exposure to infrared radiation, and a luminous flux of the visible spectrum for 1.5 min frequency of 4 Hz. After the first session the pain was gone.

In this way the treatment was conducted in 35 patients with pain syndromes of different origin. In all cases, it was observed cessation of pain, including after one session - 5, two sessions - 7, 5 sessions - 11 and after 8 sessions 12 patients.

The method of treatment of pain syndromes, including the effects of laser radiation in the infrared range, characterized in that simultaneously with the laser radiation realize the impact of a luminous flux of the visible red and the blue part of the spectrum on the projection area of pain 30 sec - 1.5 min with a frequency radiation pulses 1-16 Hz.



 

Same patents:

The invention relates to ophthalmology, and can be used to treat the false myopia

The invention relates to medicine, namely to physiotherapy, and can be used in the treatment of periodontitis
The invention relates to medicine, namely to traumatology and orthopedics, and can be used to diagnose areas of articular cartilage affected degenerative-dystrophic process
The invention relates to medicine, namely to orthopedics
The invention relates to medicine, namely to traumatology and orthopedics, neurology, neurosurgery
The invention relates to medicine and can be used for the prevention of reactive syndrome when conducting linear laser trabeculoplasty
The invention relates to medicine, specifically to gynecology, and relates to methods of treatment of purulent inflammatory diseases of uterine appendages (GSPM)
The invention relates to medicine, namely to pediatric Oncology, and can be used in complex treatment of children with hemangiomas under the age of one year
The invention relates to medicine, namely to laser ENT surgery

FIELD: medicine.

SUBSTANCE: method involves introducing 0.1-0.3 ml of photosensitizing gel preliminarily activated with laser radiation, after having removed neovascular membrane. The photosensitizing gel is based on a viscoelastic of hyaluronic acid containing khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-2% by mass. The photosensitizing gel is in vitro activated with laser radiation having wavelength of 661-666 nm during 3-10 min with total radiation dose being equal to 100-600 J/cm2. The gel is introduced immediately after being activated. To compress the retina, vitreous cavity is filled with perfluororganic compound or air to be further substituted with silicon oil. The operation is ended with placing sutures on sclerotomy and conjunctiva areas. Compounds like chealon, viscoate or hyatulon are used as viscoelastic based on hyaluronic acid. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity.

EFFECT: excluded recurrences of surgically removed neovascular membrane and development of proliferative retinopathy and retina detachment; retained vision function.

3 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva and Tenon's capsule of 3-4 mm in size in choroid hemangioma projection to sclera 3-4 mm far from limb. Tunnel is built between sclera and Tenon's capsule to extrasclerally introduce flexible polymer magnetolaser implant through the tunnel to the place, the choroid hemangioma is localized, after performing transscleral diaphanoscopic adjustment of choroid hemangioma localization and size, under visual control using guidance beam. The implant has permanent ring-shaped magnet in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 2-3 mTesla units intensity. It is arranged with its north pole turned towards the choroid hemangioma so that extrascleral implant laser radiator disposition. The other end of the implant is sutured to sclera 5-6 mm far from the limb with two interrupted sutures through prefabricated openings. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. 0.1-1% khlorin solution is injected in intravenous bolus dose of 0.8-1.1 mg/kg as photosensitizer and visual control of choroid hemangioma cells fluorescence and fluorescent diagnosis methods are applied. After saturating choroid hemangioma with the photosensitizer to maximum level, transscleral choroid hemangioma laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm with total radiation dose being equal to 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the intraocular neoplasm, repeated laser irradiation of the choroid hemangioma is carried out with radiation dose of 30-60 J/cm2.

EFFECT: enhanced effectiveness of treatment.

4 cl

FIELD: medicine.

SUBSTANCE: method involves creating tunnel between sclera and Tenon's capsule in intraocular neoplasm projection. Intraocular neoplasm localization and size is adjusted by applying transscleral diaphanoscopic examination method. 0.1-0.3 ml of photosensitizing gel based on viscoelastic of hyaluronic acid, selected from group containing chealon, viscoate or hyatulon, is transsclerally introduced into intraocular neoplasm structure using special purpose needle in dosed manner. The photosensitizing gel contains khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-1% by mass. Flexible polymer magnetolaser implant is extrasclerally introduced into the built tunnel in intraocular neoplasm projection zone under visual control using guidance beam. The implant has permanent ring-shaped magnet axially magnetized and producing permanent magnetic field of 3-4 mTesla units intensity, in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The implant is arranged with its north pole turned towards the intraocular neoplasm so that implant laser radiator lens is extrasclerally arranged in intraocular neoplasm projection zone. The implant light guide is sutured to sclera 5-6 mm far from the limb with single interrupted suture. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transscleral intraocular neoplasm laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm. The treatment course being over, the flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, neodymium-iron-boron or samarium-iron-nitrogen. 0.1-1% khlorin solution as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is additionally intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg and repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2 15-20 min later during 30-90 s.

EFFECT: complete destruction of neoplasm; excluded its further growth.

4 cl

FIELD: medicine.

SUBSTANCE: method involves applying transscleral diaphanoscopic examination method for adjusting intraocular neoplasm localization and size. Rectangular scleral pocket is built 2/3 times as large as sclera thickness which base is turned from the limb. Several electrodes manufactured from a metal of platinum group are introduced into intraocular neoplasm structure via the built scleral pocket. Next to it, intraocular neoplasm electrochemical destruction is carried out in changing electrodes polarity with current intensity of 100 mA during 1-10 min, and the electrodes are removed. Superficial scleral flap is returned to its place and fixed with interrupted sutures. 0.1-2% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transpupillary laser radiation of 661-666 nm large wavelength is applied at a dose of 30-120 J/cm2. the operation is ended with placing sutures on conjunctiva. Platinum, iridium or rhodium are used as the metals of platinum group. The number of electrodes is equal to 4-8. 0.1-1% khlorin solution, selected from group containing photolon, radachlorine or photoditazine, is additionally repeatedly intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2.

EFFECT: complete destruction of neoplasm; excluded tumor recurrence; reduced risk of tumor cells dissemination.

3 cl, 3 dwg

FIELD: medicine.

SUBSTANCE: the present innovation deals with treating vascular cutaneous neoplasms, such as nevus flammeus and gemangiomas. Light-thermal impact at energy ranged 39-47 J/sq. cm should be performed in two stages, and between them, 2-3 wk after the onset of vascular resistance at the first stage one should perform beta-therapy daily for 2-3 d at single dosage being 20 g. Then, 3 wk later it is necessary to conduct the second stage of light-thermal impact by starting at energy value being 42 J/sq. cm, not less. The method enables to shorten therapy terms due to applying combined method to affect vascular cutaneous neoplasms.

EFFECT: higher therapeutic and cosmetic effect.

1 ex

FIELD: medicine.

SUBSTANCE: method involves intravitreously introducing two electrodes into intraocular neoplasm after carrying out vitrectomy and retinotomy to expose the intraocular neoplasm. The electrodes are manufactured from platinum group metal. Electrochemical destruction is carried out with current intensity of 100 mA during 1-10 min or 10 mA during 10 min in changing electrodes polarity and their position in the intraocular neoplasm space, and the electrodes are removed. 0.1-1% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, intravitreous laser radiation is carried out in parallel light beam of wavelength equal to 661-666 nm is applied at a dose of 30-120 J/cm2.The transformed retina and tumor destruction products are intravitreally removed. Boundary-making endolasercoagulation of retinotomy area is carried out after having smoothed and compressed retina with perfluororganic compound. The operation is finished with placing sutures on sclerotomy and conjunctiva. Platinum, iridium or rhodium are used as the platinum group metals. Another embodiment of the invention involves adjusting position and size of the intraocular neoplasm in trans-scleral diaphanoscopic way. Rectangular scleral pocket is built above the intraocular neoplasm to 2/3 of sclera thickness with its base turned away from limb. Several electrodes are introduced into intraocular neoplasm structure via the built bed. The electrodes are manufactured from platinum group metal. Electrochemical destruction is carried out with the same current intensity in changing electrodes polarity and their position in the intraocular neoplasm space, and the electrodes are removed. Superficial scleral flat is returned to its place and fixed with interrupted sutures. 0.1-1% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg after having carried out vitrectomy and retinotomy. Visual control of intraocular neoplasm cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, intravitreous laser radiation is carried out in parallel light beam of wavelength equal to 661-666 nm is applied at a dose of 30-120 J/cm2. The transformed retina and tumor destruction products are intravitreally removed using vitreotome. Boundary-making endolasercoagulation of retinotomy area is carried out after having smoothed and compressed retina with perfluororganic compound. The operation is finished with placing sutures on sclerotomy and conjunctiva. Platinum, iridium or rhodium are used as the platinum group metals. The number of electrodes is equal to 4-8.

EFFECT: reduced risk of metastasizing.

4 cl, 13 dwg

FIELD: medicine.

SUBSTANCE: method involves building tunnel to posterior eyeball pole in inferoexterior and superexterior quadrants. The tunnel is used for implanting flexible polymer magnetolaser implant to the place, the subretinal neovascular membrane is localized. The implant has a permanent magnet shaped as a cut ring and is provided with drug delivery system and a short focus scattering lens of laser radiator connected to light guide. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 5-7 mTesla units intensity. It is arranged with its north pole turned towards sclera at the place of the subretinal neovascular membrane projection with extrascleral arrangement of laser radiator lens membrane being provided in the subretinal neovascular membrane projection area. The other implant end is sutured to sclera 5-6 mm far from the limb via holes made in advance. The implant is covered with conjunctiva and retention sutures are placed thereon. Light guide and drug supply system lead is attached to temple with any known method applied. Drugs are supplied via the implant drug supply system in retrobulbary way in any order. Triombrast is given in the amount of 0,4-0,6 ml and dexamethasone or dexone in the amount of 0,4-0,6 ml during 3-4 days every 12 h. 0.1-1% aqueous solution of khlorin is intravenously introduced at the third-fourth day after setting the implant as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, at a bolus dose of 0.8-1.1 mg/kg. Visual control of subretinal neovascular membrane cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the subretinal neovascular membrane with the photosensitizer to maximum saturation level, intravitreous, transretinal laser radiation of 661-666 nm large wavelength is applied at general dose of 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the subretinal neovascular membrane via laser light guide and implant lens, repeated laser irradiation of the subretinal neovascular membrane is carried out with radiation dose of 30-60 J/cm2.

EFFECT: accelerated subretinal edema and hemorrhages resorption; regression and obliteration of the subretinal neovascular membrane; prolonged vision function stabilization.

6 cl

FIELD: medicine.

SUBSTANCE: method involves filling vitreous cavity with perfluororganic compound. Two electrodes manufactured from platinum group metal are intravitreally, transretinally introduced into intraocular neoplasm. Electrochemical destruction is carried out with current intensity of 10-100 mA during 1-10 min in changing electrodes polarity and their position in the intraocular neoplasm space, and the electrodes are removed. 0.1-1% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, intravitreous, transretinal laser radiation of 661-666 nm large wavelength is applied at a dose of 30-120 J/cm2 in perfluororganic compound medium. The transformed retina and tumor destruction products are intravitreally removed with perfluororganic compound volume being compensated with its additional introduction. Boundary-making endolasercoagulation of retinotomy area is carried out. The perfluororganic compound is substituted with silicon oil. The operation is ended in placing sutures over sclerotmy areas and over conjunctiva. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity. Platinum, iridium or rhodium are used as the platinum group metals.

EFFECT: complete destruction of neoplasm; reduced dissemination risk.

6 cl, 12 dwg

FIELD: medicine, applicable for stopping of pains of various nature.

SUBSTANCE: the device has a quantum-mechanical oscillator located in a casing, magnet, vessel for medicinal agent and a hollow cylinder. The magnet is installed between the oscillator and the vessel. Positioned in the vessel is a hollow cylinder having through holes on its surface.

EFFECT: quick and absolute anestesia.

2 ex, 1 dwg

FIELD: medicine.

SUBSTANCE: method involves administering laser radiation therapy once a day using low intensity pulsating radiation of wavelength equal to 890nmand power density of 0.03 mW/cm2. Injured organ projection to frontal abdominal wall is exposed to radiation at the first laser therapy stage in two fields acting upon each field for 2 min with radiation pulse succession frequency equal to 80 Hz in applying stable contact-type method. Total treatment dose on two fields is equal to 0.008 J/cm2. The second laser therapy stage begins immediately after having finished the first one in applying radiation along the large intestine path using labile contact-type method in a way that radiation pulse succession frequency equal to 80 Hz is applied first during 1 min and then frequencies of 600, 150 and 300 Hz are applied also during 1 min, respectively. Total treatment dose is equal to 0.032 J/cm2 at the second stage. Total treatment dose is equal to 0.04 J/cm2 at both stages.

EFFECT: enhanced effectiveness in inhibiting dysbacteriosis; reduced frequency of postoperative complications.

Up!