A device for converting thermal energy into mechanical energy

 

The invention relates to mechanical engineering and can be used to drive a variety of mechanisms and in vehicles. Technical result achieved - improving the efficiency of the drive. A device for converting thermal energy into mechanical energy includes a housing, comprising the area of heating located therein a permanent magnet, the cooling area and the rotor is made of a ferromagnetic plates, which are installed on separate spokes of the rotor, when said plate is made of Nickel. 1 Il.

The invention relates to mechanical engineering and can be used to drive a variety of mechanisms.

The known device for converting thermal energy into mechanical energy, in particular magnetic heat engine, comprising a housing with zones of heating and cooling, located in the housing a permanent magnet and an annular rotor, made in the form of alternating areas of thermomagnetic material, made in the form of inversion of permanent magnets, and a thermal insulation material. When the cooling area of the magnetic rotor is in close proximity to the permanent magnet, to a temperature inversion of the direction of namini the air traffic management oppositely directed fields, the rotor starts to rotate.

However, due to the loss of heat between hot and cold sections of the rotor of the disadvantages of this device are low power and low efficiency, and the use of expensive intermetallic compounds.

The problem to which the invention is directed, is the additional mechanical energy.

The problem is solved at the expense of achieving a technical result, which is to increase the efficiency of the internal combustion engine by converting thermal energy of the exhaust gases of the internal combustion engine into mechanical energy.

This technical result is achieved in that a device for converting thermal energy into mechanical energy, comprising a housing in which is installed a permanent magnet, the field of heating and cooling, as well as the rotor of a ferromagnetic material, a feature is that the plates of the rotor are installed on separate spokes, and the material of the plate is Nickel.

It is known that air has a very low thermal conductivity, thereby dividing the annular rotor into separate sections, we increase the temperature gradient between them.

The temperature of the Curie point of Nickel is 631 (358oC), i.e., it is in deadly converting thermal energy into mechanical energy.

The device consists of a housing 1 containing an area of heat 2 located therein a permanent magnet 3 and the cooling area 4 and the rotor 5 made of separate ferromagnetic plates 6, the material of which is Nickel. In order to reduce heat and increase the temperature gradient plate installed on a separate spokes of the rotor 7, for example through the 60o. Through insulating bushing rotor mounted on the shaft 8, mounted on bearings in the housing.

The device operates as follows.

In heat 2 due to pass through the exhaust gases of the engine is heating a local area of a rotor in close proximity to the permanent magnet 3. When the temperature above the Curie point (TeNickel plate this local area becomes non-magnetic and magnet attracts far the cold section of the rotor, which saves the ferromagnetic state. Balance is disturbed and the rotor starts to rotate. With further heating section of the rotor in the vicinity of the permanent magnet, the rotation will be constant. The recovery of ferromagnetic properties occurs in the cooling area 4. Cooling may PR>/p>Torque magnetic heat engine (RBP) creates attraction part of the rotor that has retained its ferromagnetic state to the permanent magnet stator and is proportional to the volume of this part of the rotor (V), its magnetization (J) and the field created by the permanent magnet (N) PBP~VJH.

The proposed device allows to obtain more energy from the combustible fuel engine and increase the efficiency of operation of vehicles. The extra power can be used in various ways, for example for charging the spring starter machine, to drive an electric generator, for driving the coolant pump in the cockpit heating system, etc.

Claims

A device for converting thermal energy into mechanical energy, comprising a housing, including the area of heating located therein a permanent magnet, the cooling area and the rotor is made of a ferromagnetic plates, which are installed on separate spokes of the rotor, when said plate is made of Nickel.

 

Same patents:

The invention relates to a thermomagnetic phenomena in physics and can be used to convert thermal pulses into pulses of electric current, such as copying machines, display devices, medical devices for removing heat maps of various organs, etc

Power plant // 2200241
The invention relates to the field of engine construction, namely, the power plants based on diesel engines for the generation of electric energy

The invention relates to the field of heat and Stirling engines, is designed as a stand-alone power plants for stationary and mobile objects with the simultaneous production of electricity and heat

The invention relates to the field of engineering, namely the engine, and allows to increase the efficiency of the device for heat recovery from exhaust gases of internal combustion engines

The invention relates to mechanical engineering, in particular the engine

Gravity-heat engine // 2180703
The invention relates to energy

Power plant // 2180048
The invention relates to power plants with internal combustion engines and steam engines (PM), utilizing the heat of exhaust gases

Gravity-heat engine // 2180047
The invention relates to engines fueled by low-grade heat

The invention relates to the field of power engineering and energy converters, direct cycle (e.g., Stirling engines or internal combustion engines), is intended as a stand-alone power plants for stationary and mobile objects with the simultaneous production of electricity and heat

The invention relates to a power system, relates to power converters direct cycle (for example, internal combustion engines, Stirling engines) and is intended as a stand-alone power plants for stationary and mobile objects with the simultaneous production of electricity and heat

The invention relates to the field of power engineering and energy converters, direct cycle (for example, internal combustion engines, Stirling engines), is intended as a stand-alone power plants for stationary and mobile objects with the simultaneous production of electricity and heat

Power plant // 2255238

FIELD: mechanical engineering.

SUBSTANCE: invention relates to power plants on base of diesel engines including exhaust gas heat recovery systems. Proposed power plant contains diesel engine connected with electric generator, tank for hydrocarbon material, main line to deliver hydrocarbon material, heat exchanger for fuel oil, tanks fir fuel oil and light fractions of fuel, heater and flash column, flash column is arranged inside heater housing, and heating element is arranged in space between heater housing and flash column. Heating element is connected with atomizer arranged inside flash column. Gas intake and gas outlet branch pipes of heater communicate with space between heater housing and flash column, and branch pipes to let out light fraction and fuel oil communicate, respectively, with upper and lower parts of inner space of flash column. Hydrocarbon material supply branch pipe communicates with inner space of heating element. Gas intake and gas outlet branch pipes are connected, respectively, with outlet branch pipe of diesel engine and exhaust pipe, and branch pipes to let out light fractions and fuel oil are connected, respectively, with cooling heat exchanger and with fuel oil heat exchanger. Branch pipe to supply hydrocarbon material is connected with hydrocarbon material delivery main line.

EFFECT: reduced heat losses in exhaust gas heat recovery systems designed for producing fuels from hydrocarbon raw material, improved efficiency of heat recovery.

2 cl, 2 dwg

FIELD: mechanical engineering; internal combustion engines.

SUBSTANCE: proposed internal combustion engine contains crankshaft, connecting rod, piston, intake and exhaust valves, intake and exhaust manifolds, turbocompressor and nozzle to inject water installed in intake manifold before turbine of turbocompressor.

EFFECT: improved utilization of thermal energy of exhaust gases of turbocharged internal combustion engines.

1 dwg

Gas-steam engine // 2293199

FIELD: transport and power engineering; engines.

SUBSTANCE: proposed multicylinder engine has pump and power cylinders interconnected by transfer chamber, with pistons moving synchronously and rigidly connected with rods on ends of which crossmember with two pins is arranged, with connecting rods fitted on pins and rotation opposite to each other, and two synchronizing gears. One more power cylinder operating on steam is added to pump and power cylinders. Steam is formed owing to water heating in heat exchanger arranged in transfer chamber and in exhaust space of power cylinder.

EFFECT: increased efficiency of engine and reduced overall dimensions of engine.

3 dwg

FIELD: power engineering.

SUBSTANCE: invention relates to cogeneration plants with Stirling engines designed for simultaneous production of electric energy and heat. Proposed cogeneration plant includes Stirling engine with electric generator fitted on one shaft, Stirling engine cooling system including pump an heat exchange-cooler through which air feed main line passes, external heat supply system with heat exchanger-recovering unit of heat of waste gases and heat exchanger of preliminary heating through which external heat supply system is coupled with cooling system of Stirling engine, and exhaust gas main line. Plant is furnished additionally with gas generator providing production of generator gas from different types tires of locally available fuel, generator gas main line connecting gas generator with combustion chamber of Stirling engine, main line for partial return of exhaust gases into combustion chamber of stirling engine, pump in external heat supply system providing flow of heat carrier in succession through preliminary heating heat exchanger and heat exchanger-recovering unit of heat of waste gases. Wood, peat and oil shale can be used as locally available fuel.

EFFECT: possibility of operation of different locally available fuels such as wood, peat, oil shale, etc, increased service life of engine, simplified design of system to convey heat from engine to external consumers.

1 dwg

FIELD: electrical engineering, possibly electric energy generating plants on base of liquid low-potential power source.

SUBSTANCE: electric energy generating plant includes converter of neat energy of low-potential water to kinetic energy applied to electric energy generator. Plant is mounted on draining pipeline and it has linear-structure electric energy generator. Said converter is made material with shape memory effect having transition point between temperature of low-potential water and environment and it is kinematically coupled with armature of linear- structure generator. Converter is jointly mounted with possibility of moving from low-potential water to environment and from environment to low-potential water. Environment may be in the form of water pool to which low-potential water is discharged.

EFFECT: possibility of using heat of low-potential waters with temperature 30 - 50°C discharged every day from cooling systems of waters of nuclear and heat electric power stations.

2 cl, 2 dwg

FIELD: domestic facilities.

SUBSTANCE: invention relates to combined heat and power supply plant for household use. Proposed domestic combined heat and power plant contains Stirling engine and water heater. Stirling engine is installed for heating by first burner supplied with fuel gas. Plant contains additionally intake gas duct passing from Stirling engine in contact with fuel gas intake in first burner preliminary heating of fuel gas delivered into first burner and then heating of water which is subsequently heated by water heater. Water heater is provided with second burner. Plant is designed so that outlet gas and gas from second burner form combined flow immediately after heating of water, and combined flow for heating of water is located higher from outlet gas relative to flow. Plant contains additionally cooler of Stirling engine arranged for heating water higher than outlet gas relative to direction of flow.

EFFECT: provision of effective heating of water, reduced cost of heating and provision of compact device.

2 cl, 4 dwg

Power plant // 2326257

FIELD: heating.

SUBSTANCE: invention relates to heat supply systems, particularly, to heat-generating plants. Power plant consists of heat engine, for instance, internal combustion engine, with, at least, one mechanic energy shaft, heat-exchangers of engine cooling, heat-exchanger of heat removal from gas exhaust, all heat-connected via the coolant circulation circuit, with, at least, one heat energy consumer, in which shaft of heat engine is kinematically connected with the drive shaft of cavitating-vortex heat-generator, which - at least, via inlet and outlet hydraulic channels - is connected to the mentioned circulation loop of coolant, for example, water. To provide self-purification of heat-exchangers, cavitating-vortex heat-generator is installed directly before the inlet to heat exchanger of heat removal from engine gas exhaust. Installation provides possibility to control power of the cavitating-vortex heat-generator at stabilised (set) rotations of engine drive shaft and possibility to control a ratio between power values removed from the engine to generate heat and electric energy.

EFFECT: enhancement of operational characteristics; expansion of functional abilities.

5 cl, 2 dwg

FIELD: engines and pumps.

SUBSTANCE: external combustion Stirling engine and electric generator are fitted on one shaft with the internal combustion engine (ICE). Every ICE cylinder is provided with a magnetic field source arranged in the upper part of the former and made in the form of an annular electromagnet built in the cylinder wall, or as several radial electromagnets. The Stirling engine working cylinder is enclosed in a housing with its inner space communicating with the ICE exhaust system, the electric generator being wired to the magnetic field source.

EFFECT: lower toxicity of exhaust and fuller combustion of fuel.

5 dwg

FIELD: engines and pumps.

SUBSTANCE: internal combustion engine incorporates crankshaft, con-rod, piston pin, cylinder, intake and outlet valves, inlet and outlet manifolds, turbo-compressor, nozzle to inject water into the outlet manifold and pipeline to feed water to the aforesaid nozzle. In compliance with this invention, the aforesaid pipeline feeding water to the nozzle is furnished with the fuel combustion product heat regenerator and water is injected into the outlet manifold in overheated state.

EFFECT: increased steam formation speed in injecting water into outlet manifold and improved enthalpy of combustion products.

1 dwg

FIELD: engines and pumps.

SUBSTANCE: invention relates to ship building and power engineering. Proposed method consists in guiding the ship main internal combustion engine exhaust gases via the engines turbo compressors into waste-heat recovery boiler whereto heat carrier is fed from the steam separator for it to be heated by the aforesaid gases and in feeding the steam formed in the boiler evaporation pipes into the steam separator. Here note that the ship main engine exhaust gases are forced into the exhaust pipe, their temperature behind the aforesaid waste-heat recovery boiler is kept, in all operating ranges, not less than 160°C. In compliance with this invention, given the reduction of the main engine output or the ship auxiliary loads heat consumption drop, the boiler evaporation pipe water heat carrier is replaced with an air heat carrier. For this, the boiler evaporation pipes are, first, disconnected from the steam separator by appropriate shut-off valves, the boiler evaporation pipe water heat carrier is dried off for the pipes to receive air heat carrier by communicating them with air reservoir communicating, in its turn, with the ship compressed air system. Then, air heat carrier is heated by exhaust gases in the waste-heat recovery boiler to be fed into heat exchanger for sea and mineral water desalination. Note here that brine and hot air resulted at the desalination apparatus outlet are used for ship service purposes while generated steam is fed into separator for its condensation. The proposed device incorporates additionally a heat exchanger for water desalination, a compressed air reservoir communicating with the ship compressed air system. Note here that the said reservoir outlet communicates via pressure control and shut-off valves with the waste-heat recovery boiler feed pipeline at the section between its coils and shut-off valve. The boiler coil discharge pipeline at the section between the boiler shut-off valve and coils communicates via the said shutoff valve with the said desalination heat exchanger heat carrier inlet. Note also that the boiler coils are furnished with devices to remove working heat carrier and that the desalination apparatus outlets communicate with the ship brine, steam and hot air consumers.

EFFECT: higher degree of internal combustion engine exhaust gas recovery.

2 cl, 1 dwg

Up!