The method of inoculation porous carbon material
The invention is intended for the adsorption engineering, electrical engineering and electronics and can be used to obtain active carbon electrode materials. Powder nanoporous carbon material with a volume of nanopores of 0.49 cm3/g and a specific surface area of 1330 m2/g is impregnated with a liquid oxidizing agent, for example, nitric acid with a concentration of 30-65%. Incubated at room temperature and a residual pressure of not more than 100 PA 15 minutes Impregnated powder is placed in a flask and poured acid. The mass ratio of acid : carbon material is 10:1. After incubation in a water bath at 80o2 h acid is drained. The powder is washed from acid to a pH of not less than 3, dried at 110











Claims

FIELD: production of charcoal-fibrous adsorbents.
SUBSTANCE: the invention is dealt with the field of production of charcoal-fibrous adsorbents, in particular, with devices of charcoal-fibrous materials activation. The installation contains a vertical furnace for activation of a carbon fabric and a conjugated with it steam generator, which are connected to the power source and a control unit. And at the furnace output there is a reception device. At that the furnace contains a through heated muffle, through which the treated charcoal-fibrous fabric is continuously passing. At that the muffle is located inside the detachable heat-insulating furnace body, on the inner side of which there are heating elements. Besides at the furnace outlet there is a movable container with water, in which the lower end of the through muffle is dipped. The invention offers an installation for production of activated charcoal-fibrous material, which ensures a continuous process of treatment of the charcoal-fibrous material with an overheated steam and formation of the activated fabric with high mechanical properties and a cellular structure, simple in assembly and reliable in operation.
EFFECT: the invention ensures production of the activated fabric with high mechanical properties and a cellular structure, simple in assembly and reliable in operation.
8 cl, 4 dwg
FIELD: sorption technique for purification of industrial emissions and individual pipe security facilities.
SUBSTANCE: method for production of sorbent catalyst includes preparation of impregnating solution by introducing ammonium carbonate and copper and chromium compounds into ammonia water in ratio ammonia water/ammonium carbonate/copper basic carbonate/chrome anhydride of 1:(0.07-0.15):(0.03-0.06):(0.02-0.04); impregnation with metal-containing carbon solution; aging; and granule thermal treatment.
EFFECT: sorbent catalyst with prolonged protective action in relation to chlorocyanide and decreased cost.
4 cl, 3 ex
FIELD: sorption technology; cleaning waste industrial gases; individual protective means (gas masks and respirators).
SUBSTANCE: proposed method includes carbonization, activation and impregnation of warp with ammonia solution containing catalytic additives of copper, chromium, silver and triethylenediamine followed by removal of excess of solution, aging, heat treatment and cooling; used as warp is non-woven viscose material which is carbonized at temperature of 340-400°C and impregnated at volume ratio of non-woven material and impregnating solution of 1 : (14-18); excessive impregnating solution is removed by squeezing to ratio of material and solution of 1 : (4-5); after heat treatment, product is cooled at rate of (1.5-4)°C; concentration of catalytic additives in solution is as follows, mass-%: copper, 0.3-0.4; chromium, 0.12-0.16; silver, 0.01-0.02 and triethylenediamine, 0.05-0.08.
EFFECT: improved sorption ability by decane at retained adsorption ability by chlorocyanogen; reduced resistance of layer.
2 cl, 3 ex
FIELD: production of activated carbon for medicine, production of drugs and high-purity agents; thorough cleaning of gaseous and liquid media from low-molecular, medium-molecular and high-molecular admixtures.
SUBSTANCE: proposed method includes mixing of thermoreactive organic liquids and hardening catalyst, forming spherical granules at viscosity of 10-30 cSt heated to 90-120°C, hardening of spherical granules and separation of them from oil, carbonization and vapor-and-gas activation of granules and their screening-out. Time of presence of spherical granules in heated oil during which they undergo gelatinization and poly-condensation stages is 10-30 s, after which spherical granules are kept under layer of oil for 2-10 h till complete hardening. Carbonization is performed in carbon dioxide medium at temperature of 650-850°C at rate of 6-10°C/min. Vapor-and-gas activation is performed at temperature of 850-950°C. Proposed method makes it possible to control parameters of activated carbon of micro-, meso- and macro-structure.
EFFECT: possibility of producing activated carbon possessing high adsorption ability to admixtures containing gaseous and liquid media.
4 cl, 3 ex
FIELD: heat treatment of solid carbon-containing materials for production of activated carbon.
SUBSTANCE: proposed method includes heating and carbonization of raw material in horizontal rotary furnace at continuous mode for 1.0-3.0 h at temperature of 650-850°C and rate of heating not exceeding 10°C/min; method includes also delivery of formed carbonisate to vertical activation furnace by batches without cooling them; activation of each batch is continued for ≤30 min at temperature of 750-950°C in mode of layer suspended by jet of gaseous activating agent; new batch of carbonisate is delivered after unloading the batch of finished product; proposed method includes also delivery of vapor-and-gas mixture from activation furnace to carbonization furnace in counter-flow of material being carbonized, directing the vapor-and-gas mixture from carbonization furnace to waste-heat boiler for after-burning, generation of low-pressure steam required for preparation of activating agent and decontamination of flue gases formed in waste-heat boiler.
EFFECT: intensification of heat-exchange process; improved quality of activated carbon; improved economical parameters due to saving of fuel; reduction of technological process duration.
5 cl, 1 dwg, 2 tbl, 4 ex
FIELD: carbon materials.
SUBSTANCE: preparation of carbon material from organic raw material comprises carbonization of raw material in non-oxidative medium and activation by oxygen-containing agents at 750-900°C, said raw material being sapropel with content of organic substance 55-98%. Raw material is preliminarily cooled to 0-(-50)°C and carbonization is carried out at 300-700°C until summary pore volume 0.3-2.5 cm3/g and average macropore radius 100 to 5000 nm are obtained at following size distribution of pore radius: 60-80% above 100 nm, 15-30% 2-100 nm, and 1-10% below 2 nm based on total pore volume. Carbonized product is activated to give following size distribution: 50-75% above 100 nm, 20-40% 2-100 nm, and 1-15% below 2 nm. Material having mainly macroporous structure can be used as carrier in preparation of various-type catalysts and as matrix in preparation of deposited sorbents.
EFFECT: optimized preparation process conditions.
1 tbl, 18 ex
FIELD: carbon materials and medicine-destination sorbents.
SUBSTANCE: mobile granulated carbon black bed having specific surface 35-80 m2/g id heated to 700-900°C and then subjected to pyrolytic compaction accomplished by feeding gaseous and vaporous hydrocarbons into carbon black bed and two-step deposition of pyrolytic carbon layer on carbon black particles. Carbon black is first compacted to achieve loose density of granules 0.45-0.65 g/cm3 followed by isolation of granule fraction 0.50-1.20 mm in diameter, after which moving material bed is activated with water steam at bed temperature 800-900°C to achieve total pore volume in product 0.3-0.5 cm3/g.
EFFECT: achieved size uniformity of granules and reduced content of dust inside pores and on the surface of granules.
3 cl, 2 ex
FIELD: chemical technology, sorbents.
SUBSTANCE: invention relates to sorption technique. Invention proposes a method for preparing a chemosorbent involving preparing an impregnating solution containing ferric (III) chloride, impregnation of activated carbon grains with this solution followed by their thermal treatment. Impregnation is carried out in the ratio carbon mass to volume of impregnating solution from 1:0.66 to 1:0.9 and thermal treatment is carried out at 100-109°C. The content of ferric chloride in the ready product is 3.5-6.5 % by mass. Proposed method provides preparing sorbent with high absorptive capacity by mercury vapors. Invention can be used for removal of toxic substances from air and for solution of broad spectrum of ecology problems.
EFFECT: improved preparing method of chemosorbent.
2 cl, 3 ex
FIELD: carbon materials.
SUBSTANCE: invention provides a three-step method for modifying industrial activated carbon. In the first step, activated carbon is treated for 12 -24 h with ε-caprolactam aqueous solution under static conditions. Then, activated carbon is filtered, dried, and heated at 250°C in air atmosphere. Finally, it is subjected to carbonization by heating to 900°C in inert gas (argon or nitrogen) flow.
EFFECT: increased sorption capacity relative to organic compounds and heavy metal ions.
2 tbl, 2 ex
FIELD: production of the semi-coke; methods and devices for production of the semi-coke.
SUBSTANCE: the invention is pertaining to production of the semi-coke and may be used in production of the semi-coke. The method of production of semi-coke provides for air feeding air supply into the shaft furnace from the both sides of the coal layer, kindling of the coal and withdrawal of the flammable gas in the coal layer middle cross-section. The device for realization of the method is made in the form of the vertical apparatus of the shaft type, divided into two halves and containing two working chambers: the upper chamber and the lower chamber with provision of a capability of the air blowing from above and from below and withdrawal of the flammable gas in the middle cross-section of the layer. The invention ensures the increased productivity.
EFFECT: the invention ensures the increased productivity.
2 cl, 1 dwg, 1 ex