Apparatus for producing fine metal powders
The invention relates to powder metallurgy, to a device for the production of fine metal powders by condensation from the vapor phase. In the proposed device, containing a metal evaporator, a plasma generator in the form of a nozzle-anode and cathode, the camera condensation and powder collection chamber connected with the evaporator of metal through the nozzle-anode according to the invention, the nozzle-anode made supersonic, the cathode is placed in the nozzle-anode, and the evaporator is made in the form of a vacuum melting furnace. Provided the process of obtaining a fine powder with the process of remelting of the metal and consequent saving of energy required for melting metal and capture the evaporating metal. 1 Il. The invention relates to the field of powder metallurgy, in particular to the production of fine metal powders by condensation from the vapor phase.Known methods for producing metal powder from the gas phase during arc spraying of metals, evaporation of metals in the atmosphere of inert gas, the evaporation of metals in vacuum and others [1]. In these methods, various methods carry out heating of the evaporated metal to a high temperature at which the low temperature, where is the condensation of the metal vapor in the gas volume and on the cold walls of the chamber.Known devices are stand-alone camera, pumped up to a certain pressure or filled with inert gas, in one of which are the evaporators /crucibles, boats, electric arc/, and the other cooled parts of the camera are collections of powder.Known methods and devices include two opposite stages: first, the necessary heating of the evaporated metal to a high temperature to obtain a metal vapor and, secondly, rapid forced cooling of the obtained vapor to create the conditions in which they glut.And on the cooling rate and the degree of supersaturation of the metal vapour vary the size of the obtained powder. With a slow cooling rate vapor, which corresponds to the known methods [1], the range of particle sizes is very wide. Therefore, in the resulting product, except for particles with desired size, contains particles of very small size, to catch which is very difficult.In metallurgy when the vacuum remelting of metals, on the contrary, it is necessary to use techniques that reduce the loss remelted metal evaporation. For example, prerana reach 7% [2]. Remelting of metals is carried out in a wide range of pressures of the inert gas from 10-2mm RT.article to tens of atmospheres [2]. The increased pressure in the furnace by introducing inert gas into the furnace substantially reduces the rate of evaporation of the metal, but this measure causes complication melting equipment.When remelting of Nickel and Nickel-based alloys solves the problem of removal of the metal or alloy of harmful impurities such as lead, arsenic, zinc and others [2]. Moreover, it should be noted that these impurities emitted into the atmosphere that are harmful not only to metals, but also for humans and the environment.The disadvantages of vacuum remelting of metal are metal loss by evaporation during the melting and removal of the gas environment of the metal vapour from the furnaces, which cause harm to humans and the environment.The known method of production of fine metal powders [3]. In the known method, the metal powders are served in the plasma jet two independent burners, components with each other at a right angle. In the hot zone of the powders melt and evaporate, and in cold regions of the jet is the condensation of the vapors in fine powder. The process takes place in the isolated working volume.To spending on evaporation source metal powder.Known apparatus for producing fine metal powders [4] . The known device comprises a node melting and evaporation of the metal, the plasma generator and camera collecting powder.The disadvantages of the known devices [4] should be attributed to the evaporation of the metal in the evaporator, as it requires significant energy costs.As the closest analogue for the proposed device is invited to consider the device for the production of fine metal powders containing metal evaporator, a plasma generator in the form of a nozzle-anode and cathode, the camera condensation and powder collection chamber connected with the evaporator of metal through the nozzle-anode (see EN 2116868 C1, class B 22 F 9/12, publ. 10.08.1998).The objective of the invention is the saving of metal by reducing emissions of metal vapor vacuum furnaces for melting metal.The technical result consists in the combination process to obtain fine powder with the process of melting metal, and dealt with this saving of energy required for melting metal and capture the evaporating metal.The technical result is achieved in that in the apparatus for producing fine metal powders containing ISPU with the evaporator of metal through the nozzle-anode, according to the invention, the nozzle-anode made supersonic, the cathode is placed in the nozzle-anode, and the evaporator is made in the form of a vacuum melting furnace.When the vacuum remelting of metal formed of a pair of metal before getting in a suction system, is passed through an electric arc, burning in front of a critical section of a supersonic nozzle and supersonic speed releases in the camera condensing and collecting the powder. The process of production of fine metal powder with the process of remelting of the metal leads to saving of energy required for melting and vaporization of the metal, and reducing emissions of metal vapor in the surrounding atmosphere.Gas atmosphere furnaces for vacuum remelting, containing pairs of metals in contact in the region of the nozzle, in which an electric arc, is heated to high temperatures /T>104To/. At the end of the gas through a supersonic nozzle-anode extension and sharp cooling /104-107To/from/ gas flow. Moreover, the cooling rate depends on the initial temperature of the expired gas environment. The higher the temperature the initial expiration, the greater the initial cooling rate. As a result of this sharp kondensation and further coagulation of the particles into larger particles. Such particles are less affected by the gas flow and easily assembled in the collections of the powder.Slow change of temperature of gas medium, which corresponds to the flow of the gas environment on the suction vacuum line such conditions glut metal vapor is not generated. In the result, are formed of very fine metal particles, which are almost impossible to catch and, therefore, they, together with the gases are ejected through these pumping systems in the environment.An example of the production of fine metal powders is as follows. A pair of metal produced in furnaces for melting metal, is passed through an electric arc burning between the cathode and the nozzle-anode in subcritical section of the nozzle. In the post arc gas environment containing a pair of metal is heated to high temperatures

Claims
The device is a nozzle-anode and cathode, the camera condensation and powder collection chamber connected with the evaporator of metal through the nozzle-anode, characterized in that the nozzle-anode made supersonic, the cathode is placed in the nozzle-anode, and the evaporator is made in the form of a vacuum melting furnace.
FIELD: for producing powders of metals and alloys and for applying coatings by means of gas-phase process.
SUBSTANCE: evaporator includes heater, cylindrical cells forming reservoir for melt metal, jets, ducts for inlet of melt metal and for outlet of its vapors, by-passing distributing branch pipes. According to invention heater is assembled of hollow cylindrical members mutually joined through electrically conducting couplings. Each cylindrical member of heater along its height serves as wall of cylindrical cell limiting size of cell in radial direction. On end of disc-like covers of each cylindrical cell (except upper lid along axis of which plug with duct melt metal inlet is mounted) jets are arranged coaxially relative to axis of evaporator. Plug and jet of upper cell and each next jets of cells restrict annular cone-like cavity inclined towards lower jet. Cavities and axial openings of jets form duct for outlet of vapor of melt metal.
EFFECT: reduced consumption of material, electric energy, improved operational reliability of structure.
1 dwg