Non-woven material
The invention relates to the field of production of nonwoven materials, including carbon: carbonized, and activated graphite, used as insulating, conductive and filter materials. Non-woven material consists of two nonwoven outer layers and the inner frame layer comprising a homogeneous fiber, and the layers are connected by hypoproteinemia (the number of punctures is 120-500 on 1 cm2). As a frame layer using a continuous viscose filament linear density of 192 or 380 Tex, with the strength of 600-800 CN/Tex, laid parallel to each other along the nonwoven outer layers of viscose shtabelirovaniya fibers with a length of shtabelirovanija not less than 18 mm, and the ratio of the surface of the nonwoven outer layers and the inner frame layer is(15,5-47,0): (1-4): (15,5-47,0). The surface density of the nonwoven material is 280-852 g/m2. The technical result of the claimed solution is to make adjustable strength non-woven material in a longitudinal direction while maintaining high breathability and improvement of the technological process. 2 C.p. f-crystals, 2 ill., table 4.




length 81-120 mm - not less than 35%.A lot shtabelirovaniya fibers pre loosen, then served on the carding machine. From the web form to the canvas with a surface density of 160-480 g/m2. When this fiber length 26-80 mm provide crease resistance and the volume received in the future, non-woven material. Fiber length 81-120 mm, permeating the whole mass of the resulting webs, and further non-woven material allows, already at the stage of receiving the webs, to unite all the fibers in a single mass of cloth. The resulting structure of the webs, even without hypoproteinemia, allows you to hold the fiber length 18-25 mm in weight of the fabric due to the orientation in the process of scratching. Next, the finished fibrous canvas serves on the needle stand, where they were unilateral hypoproteinemia (needles are staggered vertically relative to the canvas, the depth of the perforation 10-20 mm). The number of punctures is 60-250 on 1 cm2(H4- the e fiber length 18-25 mm volume outer nonwoven layers, which allows for the subsequent stages of the process of obtaining non-woven material, including the stage of obtaining carbon materials, to eliminate the rash fibers of this metrical composition from the mass of cloth.The base frame of the layer is obtained by parallel winding yarns with a linear density of 192 or 380 Tex on a bobbin with the aim of obtaining Rove. Used continuous filaments, capable of withstanding a tensile load of 600 to 800 CN/Tex, perform, on the one hand, the role of the threads transporters, allowing you to stretch without loss of continuity of nonwoven materials through all stages, including the stage of production of carbon materials. On the other hand, the threads of the frame layer are such a structural element of nonwoven material, which provides for hypoproteinemia durable mesh fractions long shtabelirovaniya fibers of the outer layers of continuous filaments frame layer, so that the resulting reinforced non-woven materials have a high strength.One of the advantages of the claimed non-woven material is the fact that the formation of the frame layer and the reinforcement of non-woven material occurs simultaneously. For this purpose, the outer layers non-woven Mat is the red layer in parallel to each other are placed (with a density of 9.5 38.0 g/m2between outer layers of nonwoven material. On the aggregate THEM-1800M-AND is the bond of all layers by hlopotala-tion (needles are staggered vertically relative to the canvas, the depth of the perforation 5-10 mm). The number of punctures is 60-250 on 1 cm2(H4-H41 m2). Thus, the total number of punctures in the inventive non-woven material is 120-500 on 1 cm2(H4-H41 m2).Received the original non-woven material can be independently used as filter material.Characteristics of the outer layer, frame layer and the nonwoven material are given in table. 1, 2, 3.Declared non-woven material is compared with the prototype of the benefits specified in the technical result and, in addition, allows to obtain carbon materials with different properties, for example properties of sorbents and conductive materials that can be used in the processes of sorption and electrochemical concentration of various substances, including precious metals.Strength characteristics of nonwoven material are closely related to such parameters as surface density and air shall be provided by changing the surface density. The material with low surface density strength characteristics, as a rule, lower than the strength characteristics of the material with high surface density. The change in the surface densities in the range from 280 to 852 g/m2allows you to change within wide limits air permeability (55-140 DM3/m2

In the temperature range 650oWith the gradual rise in temperature at a rate of 10oC/min receive non-woven carbonized material with the properties specified in examples 1-8 (table. 4), which can be used as insulating and filtering material and an intermediate for obtaining graphite and activated materials. For the account created at the stage of formation of the nonwoven structure, the carbonisation receive elastic and breathable material. The elasticity of the material give the thread a long 26-80 mm, the density of which increases in the carbonization process in relation to the original viscose material. At the same time, thread length 81-120 mm, penetrating all layers of nonwoven material, provide continuity by volume, and the threads of the frame layer continues to perform the role of the threads conveyors and main ProcName the measures 1-8 possess high tensile strength and high permeability, so you can use them in the filtration devices of various types (frame, palmtop, cassette filters). Having low thermal conductivity, they can be used as insulators. In addition, the obtained carbon materials are non-combustible materials and is able to work when heated to a temperature of 250-300oIn oxygen-containing environment, and when heated to a temperature of 600oWith in an inert environment.Carbonized non-woven materials may be subjected to thermal treatment at 850oIn the environment of water vapor for 30 min, can be obtained non-woven activated carbon materials with the properties specified in example 9 (table. 4), which can be used as highly efficient filtration sorption materials. Their strength and sorption properties allow you to apply this type of materials in the processes of cleaning gas and liquid environments, including for fine purification of drinking water.However, non-woven carbonized material may be subjected to thermal processing at 1500-2500oWith, you get a non-woven carbon graphite material with the properties specified in example 10 (table. 4), coloradony material avoids the use of a binder, that improves the environment, get some carbon materials with different properties, and also allows the use of the obtained carbon material for filtration of aggressive media and electrochemical processes of isolation of metals.
Claims
FIELD: shaping or joining of plastics.
SUBSTANCE: method comprises applying a group of layers of material on the former. The working surface of the former is treated with an antiadhesive material. The first group of the layers made of polyurethane and/or elastomer whose temperature of solidification ranges from 10 to 40°C is applied on the former. The layers are allowed to be solidified, excluding the last layer. The layer of woven or fiber material is applied on the last layer, and then the second group of the layer made of reinforced plastics is applied on the first group. After the solidification of the layers, the third group of layers made of polyurethane and/or elastomer whose solidification temperature ranges from 10 to 40°C is applied on the second group.
EFFECT: simplified method and enhanced reliability and service life of article.
7 cl, 2 dwg, 2 ex
FIELD: construction.
SUBSTANCE: invention may be used during construction of social and industrial purpose buildings with internal noise sources, for the enhancement of acoustic comfort in premises. The claimed method is used for the production of heat-insulating materials by binding two tapes with a fusible layer, which is a milled foamed foil-coated and/or pure foamed polymer, by a device containing a means for the binding of the tapes and the fusible layer: drop rolls, guiding rollers, a fusible layer feeding assembly, a flattening assembly containing guiding sides located along the lower tape and a transverse scraper located above it, the guiding sides and the scraper are installed so as to provide for vertical reciprocal displacement for forming the bulk layer with a given thickness; a heating means (a hot air gun with an adjustable tilt angle), and means for web pressing (heated pressure rolls).
EFFECT: increased sound-insulating capacity of closed honeycomb heat-insulating materials based on foamed polymers.
3 dwg
FIELD: construction.
SUBSTANCE: may be used for heat protection of fencing structures. The invention purpose is to enhance sound-insulating capacity of heat-insulating materials based on foil-coated foamed polyethylene, production of materials with preset sound- and heat-insulating properties. The objective is attained due to the following: the heat-insulating material contains layers of foil-coated foamed polyethylene and an intermediate plastic layer, its external layers are made of foamed polyethylene bands coated with foil from one or two sides, a bulk layer of crushed particle granules is located between the foil-coated foamed polyethylene bands; the particles are foil-coated polyethylene pieces glued together, forming a combination of closed and open cells.
EFFECT: disposal of waste from production of foil-coated foamed polyethylene and similar materials; possibility to obtain heat-insulating materials with given sound-insulating properties.
3 dwg
FIELD: transportation.
SUBSTANCE: invention relates to multilayer blocks for manufacturing details for external parts of vehicles. The multilayer block consists of an internal layer from thermoformable polyurethane foamed plastics, paper, metal or plastic honeycombs fibrous layers furnished on both sides of the internal layer and reinforced by polyurethane. The block also includes an external layer with an A surface quality class selected from the group containing metal foil or tin, as well as compact thermoplastic plastic components from polymethylmethacrylate, acryl ether of modified styrene-acrylonitrile-terpolymer, polycarbonate, polyamide, polybutyleneterephthalate and/or polyphenyl oxide on the layer of the fibre. If necessary, the block includes a decorative layer selected from the group, containing textile substances, covered, to protect against foaming, by a film from thermoplastic polyurethane, compact or foamed polymer films, as well as evaporated of RIM-films from polyurethane on the second layer of the fibre.
EFFECT: high-quality surfaces of details for external sites of whatever vehicles with A-class surface.
2 cl, 3 ex
FIELD: technological processes.
SUBSTANCE: method of multi-layer basic part manufacture consists in shaping of external and/or internal shell. After that shells are joined to each other, and space created between them is filled with adhesive mixture. Prior to molding of at least one shell made of transparent plastic with thickness of not more than 2 mm, mirror image is applied. Afterwards it is molded by double-stage vacuumising. At the first stage relief is shaped in accordance with applied image. At the second stage edge zones are vacuumised with high draft.
EFFECT: expansion of basic parts functional resources since they simultaneously perform heat-insulating, bearing and decorative functions.
5 cl
FIELD: construction.
SUBSTANCE: manufacturing the first method envisages fabrication of the underlying plasterboard of a compound containing the following components, wt %: plaster bonding agent - 71.4-83.3 and modifying lime water suspension - 16.7-28.6, the latter's composition being as follows, wt %: caustic lime - 0.3-0.6 wt %, sodium polycarboxylate - 3.0-6.0 wt %, potassium polymethylsiliconate - 1.5-3.0 wt %, sodium tripolyphosphate - 0.05-1.0 wt %, water - the rest. Whenever required the uncured plasterboard is covered with a net of flaxen, cotton or synthetic threads and a foam plastic plate or board, the contacting surface of the latter having been pre-treated with the following composition solution wt %: caustic lime - 0.5-1.0, sodium tripolyphosphate - 0.02-0.05, potassium polymethylsiliconate - 20.0-25.0, sodium polysulphomelaminate -20.0-25.0, water - the rest. Whenever required after the underlying plasterboard has been cured the foam plastic board may be covered with net or fabric with another plaster layer applied onto it which composition is identical to that of the underlying layer. After the plaster layer(s) hardening the product undergoes dry-out at a temperature no more than 50°C and the air humidity no more than 5%. The second method envisages application of composite plaster water suspension onto the surface of a mechanically pre-treated foam plastic board. The third method envisages usage of plaster suspension only. There is also a lightweight sandwich-type plasterfoampolymeric composite product described that consists of at least one plaster board (layer) and/or a foam plastic layer made of a plate or a shaped foam plastic blank; whenever required the latter's sides are pre-treated with modifying lime water suspension and covered with a reinforcement net of flaxen, cotton or synthetic threads.
EFFECT: fabrication of a lightweight product, durable, environmentally friendly and characterised by improved thermal and moisture insulation properties.
7 cl, 1 tbl, 26 ex
FIELD: construction.
SUBSTANCE: invention is related to construction branch of industry, in particular to manufacture of panels of "sandwich" type used as external envelopes of buildings and structures. Method includes turn of bar from previously cut mineral wool plate with width equal to panel thickness around its longitudinal axis by 90°. Bar is placed on delivery table. Additionally prior to cladding layer of mineral wool heat insulation material is treated by single-component glue along its whole width. Process of glue polymerisation is intensified by means of water supply into area of glue supply. Then carpet of mineral wool heat insulation material treated with glue is covered with foam polystyrene and passed through pressing rollers. After that combined carpet is sent to milling unit, where disk cutter is used to give required width to the carpet with strictly vertical longitudinal end perpendicular to panel plane. Then one bar with thickness equal to panel thickness is placed on both sides of carpet. Produced carpet is clad with galvanised metal on both sides.
EFFECT: creation of method for manufacture of "sandwich" type panels with combined heat insulation material, with higher heat insulation and strength characteristics.
2 dwg, 1 tbl
FIELD: construction.
SUBSTANCE: method consists in production of foam plastic stock that follows profile of final product, but having lower size, application of glass plastic mesh if necessary and layer of gypsum mass from composition that contains gypsum binder, slaked lime, potassium poly-methyl-siliconate and water.
EFFECT: produced item has low volume weight, good strength properties and low water uptake.
2 cl, 1 tbl, 15 ex