Полимерная композиция триботехнического назначения

 

Изобретение относится к полимерным композициям триботехнического назначения, предназначенным для эксплуатации в узлах трения машин и оборудования. Композиция включает: политетрафторэтилен и 0,1-1,0 мас. % природный алмазный порошок, активированный в планетарной мельнице АГО-2 в течение 5 мин. Изобретение позволяет повысить износостойкость и эластичность композиционного материала и улучшить его прочностные характеристики. 2 табл.

Изобретение относится к области полимерного материаловедения, а именно к разработке полимерных композиционных материалов триботехнического назначения. Известны композиционные материалы триботехнического назначения, предназначенные для эксплуатации в узлах трения машин и оборудования, на основе политетрафторэтилена (ПТФЭ) и различных наполнителей. Традиционными наполнителями ПТФЭ, используемыми с целью повышения их износостойкости, сохранения коэффициента трения на уровне исходного полимера, являются вещества, обладающие в силу своих структурных особенностей и химических свойств смазочной способностью: дисульфид молибдена, нитриды бора, кремния, графит, кокс [Истомин Н. П. , Семенов А. П. Антифрикционные свойства композиционных материалов на основе фторопластов. - М. : Наука, 1987. - 147 с. ] . Материалы известны как самосмазывающиеся антифрикционные с малым коэффициентом трения, но имеют низкие деформационно-прочностные характеристики, обладают повышенной жесткостью, что снижает ресурс их работы в качестве герметизаторов. Известны также триботехнические материалы на основе ПТФЭ и ультрадисперсных соединений, в том числе -сиалона [ТУ 301-05-120-91 "Композиции фторопластовые малонаполненные антифрикционного назначения"] и ультрадисперсных алмазных порошков или так называемых кластеров синтетического углерода [Малевич А. М. , Овчинников Е. А. , Ю. С. Бойко, Струк В. А. Триботехнические характеристики ПТФЭ, модифицированного кластерами синтетического углерода //Трение и износ. - 1998. - Т. 19, 3. - С. 366-369] . Обладая высокой износостойкостью в сочетании с высокой прочностью, материалы характеризуются низкой эластичностью, что ограничивает области их применения. Кроме того, эти материалы могут эксплуатироваться только при невысоких нагрузках и скоростях скольжения. Наиболее близким по технической сущности к заявленному материалу является малонаполненный композит, содержащий ПТФЭ (99,9-98,5 мас. %) и в качестве наполнителя ультрадисперсный алмазосодержащий порошок (0,1-1,5 мас. %) (прототип) [RU 2114874 С1, 10.07.1998 /Антифрикционная полимерная композиция герметизирующего назначения] . Данный материал обладает высокой износостойкостью и может эксплуатироваться в условиях повышенных нагрузок, но также характеризуется недостаточной эластичностью, что ограничивает области его применения, например, в качестве сальниковых или манжетных уплотнений и др. Технической задачей изобретения является повышение износостойкости и эластичности композиционного материала при улучшении его прочностных характеристик. Достижение положительного эффекта обеспечивается введением в ПТФЭ активированных природных алмазных порошков (ПАП) при следующем соотношении компонентов (мас. %): Активированный природный алмазный порошок (ПАП) - 0,1 - 1,0 Политетрафторэтилен (ПТФЭ) - Остальное Политетрафторэтилен (фторопласт-4) - промышленный продукт ГОСТ 10007-80, представляющий собой белый, рыхлый порошок со степенью кристалличности до спекания 95-98%, после спекания 50-70% и плотностью 2,17-2,19 г/cм3, Tпл - 327oC. Природный алмазный порошок представляет собой смесь высокодисперсных алмазов со средним размером частиц менее 40 мкм, полученный из отходов алмазного сырья после переработки. Для получения композиции в политетрафторэтилен вводили природный алмазный порошок (ПАП), подвергнутый механической активации в планетарной мельнице АГО-2 в течение 5 мин при скорости вращения ротора 50 об/с [Аввакумов Е. Г. Мягкий механохимический синтез // Химия устойчивого развития. - 1994. - Т. 2, 2-3. - С. 541-559] . Введение в ПТФЭ неактивированного ПАП позволило получить материалы с более высокими триботехническими характеристиками, но физико-механические свойства при этом ухудшились по сравнению с прототипом, что можно объяснить неоднородным по дисперсности использованным ПАП (табл. 1). Время активации ПАП, соответствующее 5 мин, выбрано как оптимальное, приводящее к достижению более высоких результатов по свойствам композита. Механическую активацию наполнителя проводили с целью получения однородного по дисперсности порошка и повышения реакционной способности частиц алмазов, так как ПТФЭ, как полимерное связующее, характеризуется инертностью, низкой адгезионной способностью, что затрудняет межфазное взаимодействие в композите и таким образом сдерживает процессы структурообразования. Известен композиционный материал на основе ПТФЭ и кокса, подвергнутого механической активации в планетарной мельнице [Пугачев А. К. , Полозов Б. В. , Пирог О. А. и др. Механический способ получения композиционных материалов на основе ПТФЭ и кокса // Дезинтеграторная технология /Тез. докл. V Всесоюз. совещания, Таллинн - 1987. - С. 69-70] . Введение механоактивированного кокса в ПТФЭ позволило получить материал с повышенными износостойкими характеристиками, но при этом происходит ухудшение физико-механических характеристик на 20-30%. Предварительная обработка ПАП в планетарной мельнице АГО-2 способствовала уменьшению размеров частиц в 40-80 раз, усреднению дисперсного состава наполнителя и повышению их структурной активности, что привело к трансформации ленточной структуры исходного ПТФЭ в более упорядоченную сферолитную при введении активированного ПАП и, как следствие, к повышению триботехнических и деформационно-прочностных характеристик материала (табл. 2). Диспергирование частиц ПАП и их структурообразующие свойства зарегистрированы методами электронной микроскопии и рентгеноструктурного анализа. Для получения композиционного материала в ПТФЭ вводили активированный ПАП, помещая расчетное количество наполнителя в полимер, до получения однородной массы. Затем из композиции путем холодного прессования формовали изделия требуемой формы и спекали их в электрической печи при температуре 3705oС. Сочетание ПТФЭ и активированного в течение 5 мин ПАП позволяет получить композиционный материал, обладающий высокой износостойкостью и повышенным комплексом деформационно-прочностных характеристик. Подобные свойства композита заявляемого состава обусловлены влиянием механоактивированного алмазного порошка на процессы формирования структуры. Пример. 99,0 г политетрафторэтилена и 1,0 г активированного природного алмазного порошка смешивали в лопастном смесителе до получения однородной массы. После смешения композицию сушили в термошкафу при температуре 100-120oС в течение 1 ч. Затем композицию помещали в пресс-форму и прессовали изделие при удельном давлении 50 МПа. Спекание проводили в электрической печи при температуре 3705oС. Охлаждение спеченных изделий проводили непосредственно в печи. Остальные примеры получения композиционного материала заявляемого состава приведены в таблице примеров. Методики определения свойств композита Деформационно-прочностные характеристики композита заявляемого состава определяли на стандартных образцах (ГОСТ 11262-80). Испытания проводили на разрывной машине "Инстрон" (Англия) при скорости перемещения подвижных захватов 100 мм/мин. Триботехнические параметры композита определяли на машине трения СМЦ-2 по схеме вал-втулка. Нагрузка 67 Н, скорость скольжения 0,39 м/с, путь трения 7 км. Исследуемый образец - втулка с внешним и внутренним диаметрами 3222 мм соответственно, высотой 21 мм, контртело - стальной вал с твердостью 45-50 HRC, шероховатостью 0,06-0,07 мкм. Технико-экономическая эффективность Композиционный материал заявляемого состава обладает повышенными эластичностью и прочностью в сочетании с повышенной износостойкостью. Как видно из приведенных данных, износостойкость материала возросла по сравнению с исходным полимером в 30-70 раз, прочность при растяжении на 25-35%, эластичность - на 30%; по сравнению с прототипом износостойкость увеличилась в 3-6 раз, прочность при растяжении на 30-40%, относительное удлинение при разрыве на 60%. Оптимальное содержание наполнителя 0,5-1,0 мас. %. Дальнейшее увеличение содержания наполнителя приводит к снижению деформационно-прочностных и триботехнических характеристик. Применение композиционного материала триботехнического назначения заявляемого состава в составе уплотнительных элементов узлов трения машин и механизмов позволит повысить ресурс их работы.

Формула изобретения

Полимерная композиция триботехнического назначения, содержащая политетрафторэтилен и алмазосодержащий наполнитель, отличающаяся тем, что в качестве алмазосодержащего наполнителя она содержит природный алмазный порошок, активированный в планетарной мельнице АГО-2 в течение 5 мин, при следующем соотношении компонентов, мас. %: Активированный природный алмазный порошок - 0,1 - 1,0 Политетрафторэтилен - Остальное

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к новой резиновой смеси на основе фторкаучука и может быть использовано в качестве антифрикционных покрытий по металлу и резинам

Изобретение относится к области получения абразивостойких композиций на основе венилиденфторсодержащих сополимеров и может быть использовано в химической, автомобильной, перерабатывающей и других отраслях промышленности

Изобретение относится к композиции для соэкструзии с поливинилиденфторидом на основе поливинилиденфторида (ПВДФ), полиалкилметакрилата и акрилового и/или метакрилового эластомера, обеспечивающей адгезию поливинилиденфторидного полимера с несовместимой с ней полимерной смолой

Изобретение относится к резиновой промышленности, в частности к резиновым смесям на основе каучуков сополимеров винилиденфторида с трифторхлорэтиленом типа СКФ-32

Изобретение относится к органодисперсиям фторполимеров, в частности к органодисперсиям поливинилиденфторида и его сополимеров в органических растворителях

Изобретение относится к составу синтетической смолы, имеющей устойчивость к разрушению под действием тепла

Изобретение относится к диацеталевой композиции, которая находится в виде порошка или в виде гранулированного продукта, к способу получения диацеталевой композиции, зародышеобразователю полиолефиновой смолы, полимерной композиции, содержащей зародышеобразователь и полиолефиновую смолу и формованное изделие из полиолефиновой смолы

Изобретение относится к полимерным композициям для безасбестовых фрикционных материалов, используемых в машиностроении для изготовления тормозных накладок и колодок дисковых и барабанных тормозов

Изобретение относится к химической промышленности и может быть использовано при получении наполнителей для пластмасс, бумаги, резиновых смесей, волокон и текстильных композиций

Изобретение относится к технологии изготовления композиционных материалов, а именно получения предварительно пропитанного наполнителя для последующего формования изделий методом "сухой", "мокрой" намотки или горячего прессования, и может использоваться на предприятиях аэрокосмической и машиностроительной отраслей при создании и эксплуатации высоконагруженных изделий и конструкций из углеродопластиков

Изобретение относится к способу получения гидрофобизированной дисперсной древесины, предназначенной для использования в качестве наполнителя полимерных материалов

Изобретение относится к химии и технологии добавок к термопластам, снижающих горючесть полимеров, и может быть использовано в химической промышленности

Изобретение относится к химии и технологии добавок к термопластам, снижающих горючесть полимеров, и может быть использовано в химической промышленности

Изобретение относится к антифрикционным материалам герметизирующего назначения, которые могут быть использованы для изготовления уплотнительных элементов пар вращательного и возвратно-поступательного перемещения и узлов трения
Up!