The method of obtaining 4-alkylphenols

 

(57) Abstract:

The invention relates to a method for the synthesis of alkyl phenols of General formula

< / BR>
where R is a tertiary CnH2n+1c n=4-8, 10 and Deut - C10H21. The process is carried out by heating a mixture of phenol and the corresponding alcohol in the presence of a catalyst and 85% phosphoric acid. The original mixture of phenol : alcohol : phosphoric acid = 1 : 2 : 2 (mol.) heated at 155 - 190oC for one hour. This increases the speed of the process and increases the yield of the reaction products. table 2.

The method of obtaining 4-alkyl phenols of General formula

< / BR>
where R is a tertiary CnH2n+1with n = 4 to 8, 10 and Deut - C10H21.

The invention relates to the field of organic chemistry and can be used in the synthesis of alkyl phenols, which are used for the extraction of metals; as flotation agents; polymers; antiseptic and disinfectants; as intermediate products in the synthesis of nonionic surfactants; antioxidants polymers and lubricating oils; on the basis of ALKYLPHENOLS produce plant growth regulators, herbicides and fragrances.

Known methods of synthesis of 4-tert-butyltin the isobutyl alcohol and phenol in the presence of zinc dichloride. These methods are designed for only one representative of a range of alkyl phenols, and there is no method to view a large number of these compounds.

Closest to the proposed method, on the goal of obtaining a broad range of alkyl phenols, is a method consisting in the alkylation of phenol with the appropriate alcohol in the presence of trichloride aluminium [2] Zukerman I. P., Nazarova H. N., GOH, 7, 630 (1937).

As a prototype we have chosen the closest technique of synthesis method [2] . The disadvantage of the prototype in relation to the proposed method, is used as a catalyst trichloride aluminum. First, trichloride not regenerated; secondly, in his presence formed the reaction of aluminum; thirdly, because of its high activity are often formed all three isomers: ortho-, meta-, para-alkyl phenols, as well as alkylphenolic ether and dialkylphenol. All this complicates the process and lowers the yield of the main product. The disadvantages of the prototype should include the use in the synthesis solvent, which does not allow to carry out the process at all necessary in the synthesis temperatures, and thereby to obtain a broad range of products.

The aim of the invention is to reduce the CSO range of compounds, finding a vast application area.

This goal is achieved by mixing the phenol with the corresponding alcohol and 85% phosphoric acid and heated at a certain temperature. The method differs from the method, selected as a prototype, the fact that the reaction is carried out in the absence of solvent, and the applied catalyst - trichloride aluminum replaced by another catalyst is phosphoric acid. No solvent is required in order to carry out the process at any temperature required for reaction with any alcohol. In the presence of a solvent, this goal is not achieved. Replacement trichloride aluminum phosphoric acid is necessary because trichloride aluminum not regenerate and in his presence produced a complex mixture trudnoreshaemyh compounds, and phosphoric acid can be used repeatedly for the synthesis of the same compound, it turns out the para-isomer, decreasing the duration of synthesis, improves process control. The use of phosphoric acid allows you to easily transfer process in the industry, because it does not require individualization process for each connection, and all receive the same from different alcohols only change SS="ptx2">

In a round bottom flask, equipped with a sink-trap with reflux condenser, is mixed with 0.1 mol of phenol, and 0.2 mol of alcohol (see table. 1) and 0.2 mole of 85% phosphoric acid. The mixture is heated on an oil bath, the bath temperature indicated in the table. 1. Synthesis ends within 1 hour, as indicated by the cessation of flow of water in the sink trap. Upon completion of the reaction layer of phosphoric acid exfoliates from the product and the acid can be reused for the synthesis of the same compound. The reaction mixture is cool, add 50 ml of water and extracted the product with 150 ml of diethyl ether. The ether extract is washed with water until neutral and dried with anhydrous sodium sulfate. Distilled ether, then the original alcohol. The product was then purified by distillation in vacuum. Boiling point and melting, as well as the refractive indices of the compounds are presented in table. 1. The yields of products in the table. 1 are shown for purified by distillation in vacuum connections. The systematic names of the products of the reaction and the analysis of these compounds are presented in table 1.

The method of obtaining 4-alkyl phenols of General formula

< / BR>
where R is a tertiary CnH2n+1with n = 4 to 8, 10 and Deut - C10H21is, by heating a mixture of phenol and with fornow acid and the mixture having the molar ratio of phenol : alcohol : phosphoric acid 1 : 2 : 2, heated at 155 - 190oC for one hour.

 

Same patents:

The invention relates to medicine, namely dentistry

The invention relates to petrochemical synthesis of 2,6-di-tert-butyl-phenol alkylation of phenol isobutylester fraction in the presence of a catalyst of aluminum, dissolved in phenol, followed by separation of the desired product and impurities of alkyl phenols by distillation

The invention relates to organic synthesis, in particular the production of phenol and Cresols selective direct oxidation of benzene and/or toluene nitrogen oxide in the presence of a heterogeneous catalyst

The invention relates to the petrochemical industry, in particular the production of 2,6-di-tert-butyl-4-METHYLPHENOL (2,6-DTB-4-IC) method for the hydrogenolysis of N, N-di-methyl-(3,5-di-tert-butyl-4-oxybenzyl)-amine on the floatable nicolelovestitanic the catalyst for hydrogenating agent in the environment 2,6-di-tert-butyl-4-METHYLPHENOL at elevated temperature and pressure

The invention relates to the field of production of substituted phenols used as inhibitors of free radical processes

The invention relates to a method for production of phenol and its derivatives by oxidation of benzene and its derivatives nitrogen oxide in the presence of heterogeneous catalysts

The invention relates to the production of phenol and acetone Kukolnik method

The invention relates to methods of rational use of phenolic resin and obtaining useful products from it, in particular drugs for the protection of forest plantations from pests

The invention relates to the field of petrochemical technology, more specifically to the production of phenol and acetone Kukolnik method, and can be used in the processing of high-boiling waste production of phenol and acetone

The invention relates to catalytic chemistry organic

FIELD: chemical technology.

SUBSTANCE: invention relates to preparing antioxidants of phenolic type. Method involves using alkylation products of mixture of para- and ortho-isomers of isononylphenol with isobutylene as an antioxidant. Alkylation reaction is carried out at 40-120°C and 0.02-0.4 MPa in the presence of acid catalyst in batch and continuous feeding isobutylene to reactor unit providing maintaining isobutylene concentration in reaction mass 0.8 mole/l, not above, and the total amount of isobutylene feeding to alkylation 1.82-2.0 mole per 1 mole parent alkylphenols. Method provides preparing antioxidant showing good technological properties and high effectiveness of protective effect for rubbers of emulsion polymerization and rubbers based on thereof, and simple method for its synthesis also.

EFFECT: improved method for preparing.

6 cl, 3 tbl, 7 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for synthesis of phenols alkylated at ortho-position as parent substances used in preparing organic compounds. Method for preparing o-alkylphenols is carried out by interaction of phenol with alkanol at increased temperature in gaseous phase in the presence of metal oxide as a catalyst. Process is carried out for at least two stages in the molar ratio alkanol : phenol about ≤0.4, preferably, from 0.2 to 0.4 at each stage. Methanol is used as alkanol usually using aluminum gamma-oxide as a catalyst and process is carried out at temperature 300-400°C. Reaction products are separated by distillation. Invention provides increasing yield the end product due to enhancing selectivity with respect to o-alkylphenol.

EFFECT: improved method for preparing.

9 cl, 4 tbl, 2 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to phenolic compounds, derivatives of dialkoxyethanals that are intermediate substances in organic synthesis and can be used as cross-linking agents of phenolic type no evolving formaldehyde also. Phenolic compounds are described of the general formula (I):

wherein: R means (C3-C17)-dialkoxymethyl, 1,3-dioxolan-2-yl substituted possibly at positions 4 and/or 5 with one or some (C1-C8)-alkyls, or 1,3-dioxane-2-yl substituted possibly at positions 4 and/or 5, and/or 6 with one or some (C1-C8)-alkyls; n = 1, 2 or 3, and group or groups of the formula: -CH(OH)-R are at ortho-position and/or at para-position with respect to OH in the cycle group; m = from 0 to 4-n; X means the functional group, such as OH or Hal, or (C1-C8)-alkyl, or (C1-C8)-alkoxyl, or (C5-C12)-aryl comprising in the known cases 1 or 2 heteroatoms, such as nitrogen or oxygen, or carboxy-group, or the group -CO-Y wherein Y means (C1-C8)-alkyl or (C1-C8)-alkoxyl, or amido-group, or amino-group, or thiol-group under condition that at least on of ortho- or para-positions in phenol cycle must be substituted with hydrogen atom, and their salts with alkaline metals, earth-alkaline metals and amines also. Method for preparing indicated phenolic compounds involves interaction of the corresponding substituted phenol wherein at least one ortho- or para-position in phenol cycle must be substituted with hydrogen atom with substituted aldehyde in the presence of a base. Invention provides preparing new compounds that can be used as cross-linking agents no evolving formaldehyde and as intermediate compounds used in organic synthesis.

EFFECT: improved method for preparing.

13 cl, 1 dwg, 10 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to a method for preparing hydroxyaromatic compounds by oxidation of aromatic compounds with nitrous oxide in gaseous phase in the presence of zeolites. Method is realized by interaction of aromatic compounds of the formula (I): Ar-Rn wherein Ar means benzene or naphthalene; R means bromine, chlorine, fluorine atom, -NO2, -CN, -NH2, hydroxy-group, alkyl with 1-6 carbon atoms or phenyl; n = 0, 1 or 2 with nitrous oxide in gaseous phase in the presence of zeolites taken among the following order: pentasil, ferrierite and zeolite-β. Zeolite crystallites size is less 100 nm that is calcined before using at temperature from 500°C to 1350°C for 0.5-18 h. Before the calcination process zeolite is modified preferably by precipitation of silane or borane. Method provides realization of the process for a single step with high yield of the end compound and minimal formation of by-side substances.

EFFECT: improved preparing method.

11 cl, 3 tbl, 13 ex

FIELD: chemistry.

SUBSTANCE: invention refers to method of reaction of alkene(s) contained in hydrocarbon stream, and in a reaction-rectifying system provided with rectifying sections and in between reaction zones with subnatant catalyst. The fluid is poured from the top of each overlying zone to the bottom of underlying zone. It is followed with partial disperse passing of vapour flow from underlying zone through each reaction zone. Thus residual vapour flow from each underlying zone is backflow to the top of overlying reaction zone through overflow space to poured fluid. As a rule, higher-boiling reagent is nontertiary alcohol, carboxylic acid or benzene, while essential reaction product is ether, ester or alkylbenzene.

EFFECT: improved method.

7 cl, 3 dwg, 6 ex

FIELD: chemistry.

SUBSTANCE: said compound is a clear phenol antioxidant from 2,6-di-tert-butyl-phenol through successive aminomethylation, hydrogenolysis and extraction of the desired product. The process is carried out in the presence of 2,6-di-tert-butyl-phenol and 2,4-di-tert-butyl-phenol in amount of 0.015-0.04 wt % and 0.1-0.2 wt % respectively, to the initial 2,6-di-tert-butyl-phenol.

EFFECT: method enables to obtain a compound having guaranteed colour index for a long storage period.

1 tbl, 7 ex

FIELD: chemistry.

SUBSTANCE: present invention relates to a method for desalination of phenol resin and apparatus to that end. The disclosed method involves mixing starting components - phenol resin, diisopropyl ether, water and concentrated sulphuric acid at temperature 20-60C, phase separation of the mixture into a top organic layer, which is a mixture of desalinated phenol resin and ether, and a bottom aqueous layer with subsequent removal of the aqueous layer and distillation of ether from the organic layer and obtaining desalinated phenol resin, wherein the obtained ether is fed to the step for mixing components. The starting components are used in the following weight ratio: resin : ether : water : sulphuric acid = 1 : (0.2-0.6) : (0.7-1.0) : (0.007-0.018), wherein mixing is carried out in turbulent conditions.

EFFECT: present invention enables to obtain desalinated resin with high degree of purity while reducing the cost of the process and the obtained product.

13 cl, 24 ex, 6 tbl, 2 dwg

FIELD: medicine, pharmaceutics.

SUBSTANCE: present invention refers to a new (-)-stereoisomer of formula (I) wherein X is H, or its pharmaceutically acceptable salt which agonise GABA receptor, to a pharmaceutical composition on the basis of the presented compound, to a method for preparing the (-)-stereoisomer of formula (I) or its pharmaceutically acceptable salt, to a method for inducing or maintaining general anaesthesia, to a method for promoting pain management and to a method for promoting pain management and to a method for prototyping antiemetic activity with the use of the presented (-)-stereoisomer or its pharmaceutically acceptable salt, as well as to a new diastereoisomer (-)-2-fluoro-butyl-6-isopropylphenyl ester of carbamic acid of formula (II) wherein R1 represents a chiral amino group, and X is H.

EFFECT: preparing the pharmaceutically acceptable salt which agonise GABA receptor.

16 cl, 12 ex, 6 tbl, 4 dwg

FIELD: medicine, pharmaceutics.

SUBSTANCE: present invention refers to a new (-)-stereoisomer of formula (I) wherein X is H, or its pharmaceutically acceptable salt which agonise GABA receptor, to a pharmaceutical composition on the basis of the presented compound, to a method for preparing the (-)-stereoisomer of formula (I) or its pharmaceutically acceptable salt, to a method for inducing or maintaining general anaesthesia, to a method for promoting pain management and to a method for promoting pain management and to a method for prototyping antiemetic activity with the use of the presented (-)-stereoisomer or its pharmaceutically acceptable salt, as well as to a new diastereoisomer (-)-2,6-di-fluoro-butylphenyl ester of carbamic acid of formula (II) wherein R1 represents a chiral amino group, and X is H, or to its pharmaceutically acceptable salt.

EFFECT: preparing the pharmaceutically acceptable salt which agonise GABA receptor.

14 cl, 15 ex, 8 tbl, 3 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to an improved method of producing para-tert-butylphenol by alkylation of phenol with isobutylene on a heterogeneous sulphocationite catalyst, separating the reaction mass containing phenol, para-tert-butylphenol, ortho-tert-butylphenol, 2,4-di-tert-butylphenol and high-boiling impurities by vacuum rectification in two columns with collection of phenol and ortho-tert-butylphenol in distillate form. The reaction mass is subjected to rotory-film evaporation to separate high-boiling impurities therefrom; the commercial product is separated in an additional rectification column in distillate form; absorption trapping of uncondensed para-tert-butylphenol vapour is carried out on a vacuum line; the bottom residue of the commercial product separating column, which contains 2,4-di-tert-butylphenol and para-tert-butylphenol, is recycled to the step for alkylating phenol with isobutylene. The invention also relates to an apparatus for realising the method of producing para-tert-butylphenol.

EFFECT: method enables to obtain a product with high purity and high output.

2 cl, 1 dwg

Up!