A method of treating chronic obstructive pulmonary diseases

 

(57) Abstract:

The invention relates to medicine, namely to methods for treating electromagnetic radiation. In vitro irradiated blood in a disposable system blood transfusion optical radiation of a wavelength of 420-460 nm with subsequent reinfuse rate of 5-7 sessions over two weeks. As a result of increased treatment efficacy while reducing side effects of radiation on the organism of the patient. table 2.

The invention relates to medicine, namely to methods for treating electromagnetic radiation.

Currently, chronic obstructive lung diseases ranked fourth in prevalence after cardiovascular diseases, cancer, and traumatic lesions and represent the only group with progressive disease. Due to the chronic relapsing nature of chronic obstructive pulmonary disease cause long periods of disability with huge economic losses.

For the treatment of chronic obstructive pulmonary disease use a powerful Arsenal of chemotherapeutic drugs and different the economic oxygenation, percutaneous stimulation of the diaphragm and other

A prominent place among the methods of treatment of chronic obstructive pulmonary diseases occupy the methods associated with the use of non-ionizing electromagnetic radiation range. In particular, the use of laser irradiation of the tracheobronchial tree (Chernichovsky N. E., Povalyaev Century A. Results of treatment of endobronchial laser irradiation of patients with atrophic deforming bronchitis. Clinical medicine, 1995, No. 2, S. 29-32), transcutaneous laser irradiation of the lung fields (Hmelkov N. G., Makarova C. L., Siberian branch of the A. F. does laser irradiation on bronchial obstruction? Problems of tuberculosis, 1995, No. 3, S. 41-42).

The known method of ultraviolet irradiation of blood (UFOC), (Fedorov, T. A. , Sergeev, C. A., Lourekas R. C. Ultraviolet irradiation of autologous blood in the complex treatment of chronic bronchitis. Clinical medicine, 1990, No. 10, S. 57-60; Paleev N. R., Vetchinnikova O. N., Plaksina, Century, Bruceevo I. S. the Effectiveness of extracorporeal ultraviolet irradiation of autologous blood in the treatment of chronic nonspecific lung diseases. Herald of the Russian Academy of medical Sciences, 1993, N 3, p. 3-6).

A small dose of blood (1-2 ml per kg of body weight of patient), eksponirovannoi of organisms is t a number of drawbacks. Using quartz cuvettes reusable associated with the contamination risk: the risk of possible mutagenic and carcinogenic effects of ultraviolet radiation makes the method is contraindicated in concomitant malignant processes. In addition, stimulation of erythropoiesis and increase blood viscosity is contraindicated for patients with chronic obstructive lung disease. As you know, chronic obstructive pulmonary disease are accompanied by hyperviscosity blood because of compensatory erythropoiesis as a reaction to chronic respiratory failure, which is one of the reasons for the development of pulmonary-cardiac insufficiency. Therefore, additional stimulation of erythropoiesis caused by this method in this category of patients, undesirable.

The aim of our invention is to improve treatment efficacy while reducing side effects of radiation on the organism of the patient.

This object is achieved in that the blood of the patient is irradiated in a disposable system of blood transfusion and subsequent reinfuse course every other day for two weeks blue light with a wavelength in the range of 420-460 nm. Ultraviolet radiation has on geratetechnik and wildlife regulatory function (content Century. And., Roosters E. B., Zrodnikov B. C., Zhomy Century A. Biological and clinical effects of purple and blue light. Bulletin of experimental biology and medicine, 1997, N 4, S. 452-454).

The method is as follows. In a sterile vial with preservative (gleyzer, heparin) using disposable systems take away the blood from the cubital vein in the amount of 150-200 ml, depending on the weight of the patient. System for blood substitute system for transfusion. A clear plastic hose systems are parallel to the blue light. Is the lamp [DRB]-8 with a blue phosphor. Consumption lamp - 8W, radiation in the range of 420-460 nm is 1 W, taking into account the reflectivity of silicon hose - 0.6. The power density of irradiation - 0.16 W/cm2. The vial of blood is transferred to the upper position and produce the opposite transfusion at 60 drops per minute. The procedure is performed every other day for two weeks. The proposed method showed significantly higher efficacy than ultraviolet blood irradiation. A good result was achieved in 92% of patients: disappearing cough and shortness of breath, improved mood, sleep and appetite. Positive clinical results podtverjdau 2,65+0.17 liters, maximum ventilation from 55,0+4.7 to 69,0+5,5 l/min

The treatment results in improved blood flow, as evidenced by the decrease in blood viscosity from 5,42+0,34 to 4.36+0.52 centipoise. The duration of remission for more than one year was observed in 72% of patients.

The proposed method has several advantages over known.

The method is technically simple, available and cheap; does not cause complications, safe, patient and staff there are no "cancer fears."

In addition, the method is highly effective and produces positive results in a very short time, and does not cause the increase of blood viscosity.

Example No. 1.

Patient, 56 years of age, was admitted to the hospital with a diagnosis of acute exacerbation of chronic obstructive bronchitis, diffuse pneumosclerosis, emphysema, respiratory failure 2-nd degree.

Complaints at admission: shortness of breath, cough, nocturnal attacks of breathlessness. Ill for 10 years with frequent exacerbations. Repeatedly treated in hospital. When entering a state of moderate severity, the lungs breathing hard, the weight of dry rales. Within 20 days treated with medicines, but to no avail. Conducted 6 sessions irradiation of blood blue light with dinoire spirometry results, presented in table. 1.

Example No. 2.

Patient, 68 years of age, was admitted to the hospital with a diagnosis of chronic obstructive bronchitis in the acute stage, emphysema, pneumosclerosis, respiratory failure 2 degrees, chronic pulmonary heart at the stage of subcompensation, cardio-pulmonary insufficiency 1 degree. At admission had complaints of severe shortness of breath, cough, asthma. During examination - in the lungs breathing hard, diffuse wheezing, the temperature of 37.6o. After 10 days of ineffective medical treatment completed the treatment by irradiation with blue light with a wavelength of 420-460 nm. Conducted 5 treatments within 12 days. There was marked positive clinical effect. No complaints, temperature is normal, the lungs separate wheezing.

The results of computer spirometry, are presented in table. 2.

Maximum ventilation (MVV) has increased from 11,30 to 29,49 l per minute, the interest rate from to 8.41 to 24.57.

A method of treating chronic obstructive pulmonary disease, consisting in vitro irradiation of blood in a disposable system blood transfusion optical radiation, characterized in that the irradiated is

 

Same patents:

The invention relates to medicine, namely to methods of treatment of trophic ulcers of low-intensity laser radiation
The invention relates to medicine, namely to dermatology
The invention relates to urology and is intended to be a comprehensive treatment of chronic urethritis, urogenital infections caused
The invention relates to medicine, namely to the rehabilitation of hemodynamic disturbances associated with physical activity in overload mode
The invention relates to urology and is intended for the integrated treatment endourethral warts
The invention relates to urology and is intended for the integrated treatment of strictures of the urethra, caused by urogenital infections

The invention relates to medical equipment
The invention relates to medicine, namely to thoracic surgery

The invention relates to medicine, namely to endocrinology and physiotherapy

FIELD: medicine.

SUBSTANCE: method involves introducing 0.1-0.3 ml of photosensitizing gel preliminarily activated with laser radiation, after having removed neovascular membrane. The photosensitizing gel is based on a viscoelastic of hyaluronic acid containing khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-2% by mass. The photosensitizing gel is in vitro activated with laser radiation having wavelength of 661-666 nm during 3-10 min with total radiation dose being equal to 100-600 J/cm2. The gel is introduced immediately after being activated. To compress the retina, vitreous cavity is filled with perfluororganic compound or air to be further substituted with silicon oil. The operation is ended with placing sutures on sclerotomy and conjunctiva areas. Compounds like chealon, viscoate or hyatulon are used as viscoelastic based on hyaluronic acid. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity.

EFFECT: excluded recurrences of surgically removed neovascular membrane and development of proliferative retinopathy and retina detachment; retained vision function.

3 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva and Tenon's capsule of 3-4 mm in size in choroid hemangioma projection to sclera 3-4 mm far from limb. Tunnel is built between sclera and Tenon's capsule to extrasclerally introduce flexible polymer magnetolaser implant through the tunnel to the place, the choroid hemangioma is localized, after performing transscleral diaphanoscopic adjustment of choroid hemangioma localization and size, under visual control using guidance beam. The implant has permanent ring-shaped magnet in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 2-3 mTesla units intensity. It is arranged with its north pole turned towards the choroid hemangioma so that extrascleral implant laser radiator disposition. The other end of the implant is sutured to sclera 5-6 mm far from the limb with two interrupted sutures through prefabricated openings. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. 0.1-1% khlorin solution is injected in intravenous bolus dose of 0.8-1.1 mg/kg as photosensitizer and visual control of choroid hemangioma cells fluorescence and fluorescent diagnosis methods are applied. After saturating choroid hemangioma with the photosensitizer to maximum level, transscleral choroid hemangioma laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm with total radiation dose being equal to 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the intraocular neoplasm, repeated laser irradiation of the choroid hemangioma is carried out with radiation dose of 30-60 J/cm2.

EFFECT: enhanced effectiveness of treatment.

4 cl

FIELD: medicine.

SUBSTANCE: method involves creating tunnel between sclera and Tenon's capsule in intraocular neoplasm projection. Intraocular neoplasm localization and size is adjusted by applying transscleral diaphanoscopic examination method. 0.1-0.3 ml of photosensitizing gel based on viscoelastic of hyaluronic acid, selected from group containing chealon, viscoate or hyatulon, is transsclerally introduced into intraocular neoplasm structure using special purpose needle in dosed manner. The photosensitizing gel contains khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-1% by mass. Flexible polymer magnetolaser implant is extrasclerally introduced into the built tunnel in intraocular neoplasm projection zone under visual control using guidance beam. The implant has permanent ring-shaped magnet axially magnetized and producing permanent magnetic field of 3-4 mTesla units intensity, in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The implant is arranged with its north pole turned towards the intraocular neoplasm so that implant laser radiator lens is extrasclerally arranged in intraocular neoplasm projection zone. The implant light guide is sutured to sclera 5-6 mm far from the limb with single interrupted suture. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transscleral intraocular neoplasm laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm. The treatment course being over, the flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, neodymium-iron-boron or samarium-iron-nitrogen. 0.1-1% khlorin solution as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is additionally intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg and repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2 15-20 min later during 30-90 s.

EFFECT: complete destruction of neoplasm; excluded its further growth.

4 cl

FIELD: medicine.

SUBSTANCE: method involves applying transscleral diaphanoscopic examination method for adjusting intraocular neoplasm localization and size. Rectangular scleral pocket is built 2/3 times as large as sclera thickness which base is turned from the limb. Several electrodes manufactured from a metal of platinum group are introduced into intraocular neoplasm structure via the built scleral pocket. Next to it, intraocular neoplasm electrochemical destruction is carried out in changing electrodes polarity with current intensity of 100 mA during 1-10 min, and the electrodes are removed. Superficial scleral flap is returned to its place and fixed with interrupted sutures. 0.1-2% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transpupillary laser radiation of 661-666 nm large wavelength is applied at a dose of 30-120 J/cm2. the operation is ended with placing sutures on conjunctiva. Platinum, iridium or rhodium are used as the metals of platinum group. The number of electrodes is equal to 4-8. 0.1-1% khlorin solution, selected from group containing photolon, radachlorine or photoditazine, is additionally repeatedly intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2.

EFFECT: complete destruction of neoplasm; excluded tumor recurrence; reduced risk of tumor cells dissemination.

3 cl, 3 dwg

FIELD: medicine.

SUBSTANCE: the present innovation deals with treating vascular cutaneous neoplasms, such as nevus flammeus and gemangiomas. Light-thermal impact at energy ranged 39-47 J/sq. cm should be performed in two stages, and between them, 2-3 wk after the onset of vascular resistance at the first stage one should perform beta-therapy daily for 2-3 d at single dosage being 20 g. Then, 3 wk later it is necessary to conduct the second stage of light-thermal impact by starting at energy value being 42 J/sq. cm, not less. The method enables to shorten therapy terms due to applying combined method to affect vascular cutaneous neoplasms.

EFFECT: higher therapeutic and cosmetic effect.

1 ex

FIELD: medicine.

SUBSTANCE: method involves intravitreously introducing two electrodes into intraocular neoplasm after carrying out vitrectomy and retinotomy to expose the intraocular neoplasm. The electrodes are manufactured from platinum group metal. Electrochemical destruction is carried out with current intensity of 100 mA during 1-10 min or 10 mA during 10 min in changing electrodes polarity and their position in the intraocular neoplasm space, and the electrodes are removed. 0.1-1% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, intravitreous laser radiation is carried out in parallel light beam of wavelength equal to 661-666 nm is applied at a dose of 30-120 J/cm2.The transformed retina and tumor destruction products are intravitreally removed. Boundary-making endolasercoagulation of retinotomy area is carried out after having smoothed and compressed retina with perfluororganic compound. The operation is finished with placing sutures on sclerotomy and conjunctiva. Platinum, iridium or rhodium are used as the platinum group metals. Another embodiment of the invention involves adjusting position and size of the intraocular neoplasm in trans-scleral diaphanoscopic way. Rectangular scleral pocket is built above the intraocular neoplasm to 2/3 of sclera thickness with its base turned away from limb. Several electrodes are introduced into intraocular neoplasm structure via the built bed. The electrodes are manufactured from platinum group metal. Electrochemical destruction is carried out with the same current intensity in changing electrodes polarity and their position in the intraocular neoplasm space, and the electrodes are removed. Superficial scleral flat is returned to its place and fixed with interrupted sutures. 0.1-1% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg after having carried out vitrectomy and retinotomy. Visual control of intraocular neoplasm cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, intravitreous laser radiation is carried out in parallel light beam of wavelength equal to 661-666 nm is applied at a dose of 30-120 J/cm2. The transformed retina and tumor destruction products are intravitreally removed using vitreotome. Boundary-making endolasercoagulation of retinotomy area is carried out after having smoothed and compressed retina with perfluororganic compound. The operation is finished with placing sutures on sclerotomy and conjunctiva. Platinum, iridium or rhodium are used as the platinum group metals. The number of electrodes is equal to 4-8.

EFFECT: reduced risk of metastasizing.

4 cl, 13 dwg

FIELD: medicine.

SUBSTANCE: method involves building tunnel to posterior eyeball pole in inferoexterior and superexterior quadrants. The tunnel is used for implanting flexible polymer magnetolaser implant to the place, the subretinal neovascular membrane is localized. The implant has a permanent magnet shaped as a cut ring and is provided with drug delivery system and a short focus scattering lens of laser radiator connected to light guide. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 5-7 mTesla units intensity. It is arranged with its north pole turned towards sclera at the place of the subretinal neovascular membrane projection with extrascleral arrangement of laser radiator lens membrane being provided in the subretinal neovascular membrane projection area. The other implant end is sutured to sclera 5-6 mm far from the limb via holes made in advance. The implant is covered with conjunctiva and retention sutures are placed thereon. Light guide and drug supply system lead is attached to temple with any known method applied. Drugs are supplied via the implant drug supply system in retrobulbary way in any order. Triombrast is given in the amount of 0,4-0,6 ml and dexamethasone or dexone in the amount of 0,4-0,6 ml during 3-4 days every 12 h. 0.1-1% aqueous solution of khlorin is intravenously introduced at the third-fourth day after setting the implant as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, at a bolus dose of 0.8-1.1 mg/kg. Visual control of subretinal neovascular membrane cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the subretinal neovascular membrane with the photosensitizer to maximum saturation level, intravitreous, transretinal laser radiation of 661-666 nm large wavelength is applied at general dose of 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the subretinal neovascular membrane via laser light guide and implant lens, repeated laser irradiation of the subretinal neovascular membrane is carried out with radiation dose of 30-60 J/cm2.

EFFECT: accelerated subretinal edema and hemorrhages resorption; regression and obliteration of the subretinal neovascular membrane; prolonged vision function stabilization.

6 cl

FIELD: medicine.

SUBSTANCE: method involves filling vitreous cavity with perfluororganic compound. Two electrodes manufactured from platinum group metal are intravitreally, transretinally introduced into intraocular neoplasm. Electrochemical destruction is carried out with current intensity of 10-100 mA during 1-10 min in changing electrodes polarity and their position in the intraocular neoplasm space, and the electrodes are removed. 0.1-1% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells fluorescence is carried out by applying fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, intravitreous, transretinal laser radiation of 661-666 nm large wavelength is applied at a dose of 30-120 J/cm2 in perfluororganic compound medium. The transformed retina and tumor destruction products are intravitreally removed with perfluororganic compound volume being compensated with its additional introduction. Boundary-making endolasercoagulation of retinotomy area is carried out. The perfluororganic compound is substituted with silicon oil. The operation is ended in placing sutures over sclerotmy areas and over conjunctiva. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity. Platinum, iridium or rhodium are used as the platinum group metals.

EFFECT: complete destruction of neoplasm; reduced dissemination risk.

6 cl, 12 dwg

FIELD: medicine, applicable for stopping of pains of various nature.

SUBSTANCE: the device has a quantum-mechanical oscillator located in a casing, magnet, vessel for medicinal agent and a hollow cylinder. The magnet is installed between the oscillator and the vessel. Positioned in the vessel is a hollow cylinder having through holes on its surface.

EFFECT: quick and absolute anestesia.

2 ex, 1 dwg

FIELD: medicine.

SUBSTANCE: method involves administering laser radiation therapy once a day using low intensity pulsating radiation of wavelength equal to 890nmand power density of 0.03 mW/cm2. Injured organ projection to frontal abdominal wall is exposed to radiation at the first laser therapy stage in two fields acting upon each field for 2 min with radiation pulse succession frequency equal to 80 Hz in applying stable contact-type method. Total treatment dose on two fields is equal to 0.008 J/cm2. The second laser therapy stage begins immediately after having finished the first one in applying radiation along the large intestine path using labile contact-type method in a way that radiation pulse succession frequency equal to 80 Hz is applied first during 1 min and then frequencies of 600, 150 and 300 Hz are applied also during 1 min, respectively. Total treatment dose is equal to 0.032 J/cm2 at the second stage. Total treatment dose is equal to 0.04 J/cm2 at both stages.

EFFECT: enhanced effectiveness in inhibiting dysbacteriosis; reduced frequency of postoperative complications.

Up!