Spatula-pusher for an artificial eye lens, "the sting"

 

(57) Abstract:

The invention relates to medicine, namely to ophthalmology, and can be used for implantation of posterior chamber intraocular lenses (IOL) with open haptikos with any degree of stiffness of haptic elements. The technical result of the invention is to simplify and facilitate the process of implantation of a monolithic intraocular lens with open haptikos with any degree of stiffness of haptic elements. The original design implementation of the proposed spatula-pusher greatly facilitates manipulation when the input and output of the incision, not hurting either themselves haptic elements or structures of the eye. The merits of the proposal boils down to the original design implementation spatula-pusher. Spatula-plunger includes a handle and a curved arc working part, which ends with two whiskers. One of the whiskers is a continuation of the guide arc curved working part. Whiskers are angled to each other. The optimal tilt angle of the whiskers to each other is selected in the range 34-42. The inner surface of the whiskers, facing each other, made from one-sided flat sharpening. Sharpening wanny range to the grinding plane relative to a vertical plane, where mustache pusher, lets not hurting haptic elements IOL, to keep haptic during implantation. 1 C.p. f-crystals, 3 ill.

The invention relates to medicine, namely to ophthalmology, and can be used for implantation of posterior chamber intraocular lenses (IOL) with open haptikos with any degree of stiffness of the haptic elements.

Known spatula-pusher for an artificial eye lens comprising a handle and a curved working part containing two mustache, the ends of which are rounded (see catalogue "Microsurgical instrument", Ekaterinburg, 2000, pages 44, model M).

A disadvantage of the known spatula-pusher is the difficulty with IOL implantation in the capsular bag. Namely, a large divergence angle of the whiskers of the pusher and the lack of grinding the inner surface of the whiskers is not possible to capture the textural elements of the artificial lens, haptica slides, which generally complicates the implantation of a monolithic type lenses Sinskey".

The present invention solves the problem of reliable fixation of haptic elements of the artificial eye lens during implantation in the capsular bag and much easier manipulat original instrument type "stinger" for the monolithic implant an intraocular lens with open haptikos with any degree of stiffness of the haptic elements allows to simplify and ease the process of implantation, not hurting either themselves haptic elements or structures of the eye.

This technical result is achieved by the fact that the spatula-pusher for an artificial eye lens comprising a handle and a curved working part containing two mustache, the ends of which are rounded, the working part is curved in an arc, and one of the whiskers is a continuation of the guide arc curved working part, while the whiskers are at an angle to each other, the inner surface of the whiskers, facing each other, made from one-sided flat sharpening in a plane located at an angle of 30-45oto the plane formed by the whiskers of the pusher. While the optimal amount of tilt of the whiskers is selected in the range 34-43o.

The invention is illustrated by drawings, where Fig. 1 shows a General view of the proposed spatula-pusher type "stinger". In Fig. 2 shows a mustache spatula-pusher in an enlarged scale. In Fig. 3 - section B-B.

Spatula-plunger includes a handle 1 and a curved arc working part 2, which ends with two whiskers. One of the whiskers is a continuation of the guide arc curved working part. Whiskers are angled to each other, as shown in Fig. 2. Opt is connected to each other, made with flat sided sharpening. Sharpening moustache is made in a plane located at an angle of 30-45oto the plane formed by the whiskers of the pusher (Fig. 3). Exactly the specified range to the grinding plane relative to the vertical plane in which are located mustache pusher, lets not hurting haptic elements IOL, to keep haptic during implantation. Change the specified range of angles increase would entail the possibility of injury to haptic IOL and downward will lead to deterioration of the quality of fixation. The optimal tilt angle of the whiskers to each other in the range 34-42ois selected considering the reliability of fixation of the haptic elements of the IOL. The specified range of angles may be chosen based on the thickness of the haptic elements. If the opening angle of the whiskers will be more 42o, haptic elements will be more likely to slip off. If the opening angle of the whiskers is less than the 34othe disclosure of the whiskers will not allow fixing the haptic element.

The ends of the "whiskers" are rounded and sanded to when working in the front and back camera not to injure the structures of the eye (cornea, iris, anterior and posterior capsule).

When the IOL implantation to understand the Sri approximately 1/3 from the free end and dressed in the capsular bag or the ciliary sulcus with simultaneous reversal of the lens in a horizontal position. The rotation of the IOL for the upper shackle is clockwise. The design of the working parts of the pusher "sting" does not allow the upper arm of IOL to slip off of the pusher, which provides an easy and atraumatic implantation of the lens. Before IOL implantation capsular bag and anterior chamber filled with viscoelastic.

In cases of implantation of lenses with high rigidity haptic elements is possible using a bimanual technique, when two pushers "sting" with the alternate interception small "steps" on the upper supporting element haptic lens is implanted in the capsular bag. With this tool, located in the right hand guides and pushes the shackle IOL, and the instrument in his left hand holds the haptic element from slipping in the area of the incision.

Spatula-plunger type "stinger" thanks to its original design implementation it is possible to use not only during implantation of posterior chamber lenses, but when phacoemulsification cataract for rotation and movement of elements of the kernel of the lens.

1. Spatula-pusher for an artificial eye lens comprising a handle and a curved working part containing two mustache, the ends of which sama arc curved working part, while whiskers are angled to each other, the inner surface of the whiskers, facing each other, made from one-sided flat sharpening in a plane located at an angle of 30-45 to the plane formed by the whiskers of the pusher.

2. Spatula-pusher for an artificial eye lens according to p. 1, wherein the whiskers are angled 34-42 to each other.

 

Same patents:

The invention relates to medicine, namely to ophthalmology

The invention relates to ophthalmology and is intended to correct mydriasis
The invention relates to ophthalmology and is intended for the formation of the skin folds of the upper eyelid
The invention relates to medicine, namely to ophthalmology
The invention relates to medicine, namely to ophthalmology

The invention relates to ophthalmology, and can be used in cataract surgery

The invention relates to medical technology, and is intended for the surgical treatment of retinal detachment, mainly in complicated cases, in combination with breaks

The invention relates to ophthalmology and is intended for anticapsular fixing elastic intraocular lens

The invention relates to ophthalmology and is designed to bypass the anterior chamber with antiglaucomatous operations

FIELD: medicine.

SUBSTANCE: method involves introducing 0.1-0.3 ml of photosensitizing gel preliminarily activated with laser radiation, after having removed neovascular membrane. The photosensitizing gel is based on a viscoelastic of hyaluronic acid containing khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-2% by mass. The photosensitizing gel is in vitro activated with laser radiation having wavelength of 661-666 nm during 3-10 min with total radiation dose being equal to 100-600 J/cm2. The gel is introduced immediately after being activated. To compress the retina, vitreous cavity is filled with perfluororganic compound or air to be further substituted with silicon oil. The operation is ended with placing sutures on sclerotomy and conjunctiva areas. Compounds like chealon, viscoate or hyatulon are used as viscoelastic based on hyaluronic acid. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity.

EFFECT: excluded recurrences of surgically removed neovascular membrane and development of proliferative retinopathy and retina detachment; retained vision function.

3 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: method involves introducing 0.1-0.3 ml of photosensitizing gel preliminarily activated with laser radiation, after having removed neovascular membrane. The photosensitizing gel is based on a viscoelastic of hyaluronic acid containing khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-2% by mass. The photosensitizing gel is in vitro activated with laser radiation having wavelength of 661-666 nm during 3-10 min with total radiation dose being equal to 100-600 J/cm2. The gel is introduced immediately after being activated. To compress the retina, vitreous cavity is filled with perfluororganic compound or air to be further substituted with silicon oil. The operation is ended with placing sutures on sclerotomy and conjunctiva areas. Compounds like chealon, viscoate or hyatulon are used as viscoelastic based on hyaluronic acid. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity.

EFFECT: excluded recurrences of surgically removed neovascular membrane and development of proliferative retinopathy and retina detachment; retained vision function.

3 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva. Direct muscle is exposed and separated. Forceps is applied to the separated muscle 4-7 cm far from the place of its attachment to sclera. The muscle is notched to 1/2 of its width 1-2 mm far from the forceps on the proximal side. The muscle is bluntly exfoliated. Muscle flap is turned to after cutting it from sclera. The flap end is sutured to sclera 1-5 mm distal from the previous attachment place. Eyeball is displaced in conjunctival sack to opposite side with respect to the feeble muscle. Interrupted sutures are placed on conjunctiva incision.

EFFECT: enhanced effectiveness in correcting large squint angles.

4 dwg

FIELD: medicine.

SUBSTANCE: method involves cutting off external wall of Schlemm's canal on the whole width extent of internal scleral flap bed after making non-penetrating deep sclerectomy operation. At least three drains are entirely introduced into Schlemm's canal lumen and arranged all over the whole circumference of the Schlemm's canal. Hydrated hydrogel is used as draining polymer material. The hydrogel contains 0.5-5.0% aminocaproic acid solution, etamzylate solution and diprospan solution.

EFFECT: increased and retained hypotensive action; increased distance between internal and external wall of Schlemm's canal; reduced risk of traumatic complications in implanting drains; avoided inflammatory response of eye structures.

1 dwg

FIELD: medicine; medical engineering.

SUBSTANCE: method involves introducing device for fixing retina rupture edges into vitreous cavity after having done subtotal vitrectomy. The device has a pair of microsurgical needles connected to each other with surgical thread. Required number of needle pairs is introduced in succession to have required number of straight segments for fixing rupture edge. Needle ends are brought out in pairs together with thread to external sclera surface and cut, and the thread ends are fixed near the sclera surface.

EFFECT: reduced risk of traumatic complications; reliability of retina rupture edges fixation.

3 cl

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva and Tenon's capsule of 3-4 mm in size in choroid hemangioma projection to sclera 3-4 mm far from limb. Tunnel is built between sclera and Tenon's capsule to extrasclerally introduce flexible polymer magnetolaser implant through the tunnel to the place, the choroid hemangioma is localized, after performing transscleral diaphanoscopic adjustment of choroid hemangioma localization and size, under visual control using guidance beam. The implant has permanent ring-shaped magnet in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 2-3 mTesla units intensity. It is arranged with its north pole turned towards the choroid hemangioma so that extrascleral implant laser radiator disposition. The other end of the implant is sutured to sclera 5-6 mm far from the limb with two interrupted sutures through prefabricated openings. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. 0.1-1% khlorin solution is injected in intravenous bolus dose of 0.8-1.1 mg/kg as photosensitizer and visual control of choroid hemangioma cells fluorescence and fluorescent diagnosis methods are applied. After saturating choroid hemangioma with the photosensitizer to maximum level, transscleral choroid hemangioma laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm with total radiation dose being equal to 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the intraocular neoplasm, repeated laser irradiation of the choroid hemangioma is carried out with radiation dose of 30-60 J/cm2.

EFFECT: enhanced effectiveness of treatment.

4 cl

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva and Tenon's capsule of 3-4 mm in size in choroid hemangioma projection to sclera 3-4 mm far from limb. Tunnel is built between sclera and Tenon's capsule to extrasclerally introduce flexible polymer magnetolaser implant through the tunnel to the place, the choroid hemangioma is localized, after performing transscleral diaphanoscopic adjustment of choroid hemangioma localization and size, under visual control using guidance beam. The implant has permanent ring-shaped magnet in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 2-3 mTesla units intensity. It is arranged with its north pole turned towards the choroid hemangioma so that extrascleral implant laser radiator disposition. The other end of the implant is sutured to sclera 5-6 mm far from the limb with two interrupted sutures through prefabricated openings. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. 0.1-1% khlorin solution is injected in intravenous bolus dose of 0.8-1.1 mg/kg as photosensitizer and visual control of choroid hemangioma cells fluorescence and fluorescent diagnosis methods are applied. After saturating choroid hemangioma with the photosensitizer to maximum level, transscleral choroid hemangioma laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm with total radiation dose being equal to 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the intraocular neoplasm, repeated laser irradiation of the choroid hemangioma is carried out with radiation dose of 30-60 J/cm2.

EFFECT: enhanced effectiveness of treatment.

4 cl

FIELD: medicine.

SUBSTANCE: method involves creating tunnel between sclera and Tenon's capsule in intraocular neoplasm projection. Intraocular neoplasm localization and size is adjusted by applying transscleral diaphanoscopic examination method. 0.1-0.3 ml of photosensitizing gel based on viscoelastic of hyaluronic acid, selected from group containing chealon, viscoate or hyatulon, is transsclerally introduced into intraocular neoplasm structure using special purpose needle in dosed manner. The photosensitizing gel contains khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-1% by mass. Flexible polymer magnetolaser implant is extrasclerally introduced into the built tunnel in intraocular neoplasm projection zone under visual control using guidance beam. The implant has permanent ring-shaped magnet axially magnetized and producing permanent magnetic field of 3-4 mTesla units intensity, in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The implant is arranged with its north pole turned towards the intraocular neoplasm so that implant laser radiator lens is extrasclerally arranged in intraocular neoplasm projection zone. The implant light guide is sutured to sclera 5-6 mm far from the limb with single interrupted suture. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transscleral intraocular neoplasm laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm. The treatment course being over, the flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, neodymium-iron-boron or samarium-iron-nitrogen. 0.1-1% khlorin solution as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is additionally intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg and repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2 15-20 min later during 30-90 s.

EFFECT: complete destruction of neoplasm; excluded its further growth.

4 cl

FIELD: medicine.

SUBSTANCE: method involves creating tunnel between sclera and Tenon's capsule in intraocular neoplasm projection. Intraocular neoplasm localization and size is adjusted by applying transscleral diaphanoscopic examination method. 0.1-0.3 ml of photosensitizing gel based on viscoelastic of hyaluronic acid, selected from group containing chealon, viscoate or hyatulon, is transsclerally introduced into intraocular neoplasm structure using special purpose needle in dosed manner. The photosensitizing gel contains khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-1% by mass. Flexible polymer magnetolaser implant is extrasclerally introduced into the built tunnel in intraocular neoplasm projection zone under visual control using guidance beam. The implant has permanent ring-shaped magnet axially magnetized and producing permanent magnetic field of 3-4 mTesla units intensity, in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The implant is arranged with its north pole turned towards the intraocular neoplasm so that implant laser radiator lens is extrasclerally arranged in intraocular neoplasm projection zone. The implant light guide is sutured to sclera 5-6 mm far from the limb with single interrupted suture. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transscleral intraocular neoplasm laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm. The treatment course being over, the flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, neodymium-iron-boron or samarium-iron-nitrogen. 0.1-1% khlorin solution as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is additionally intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg and repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2 15-20 min later during 30-90 s.

EFFECT: complete destruction of neoplasm; excluded its further growth.

4 cl

FIELD: medicine.

SUBSTANCE: method involves applying transscleral diaphanoscopic examination method for adjusting intraocular neoplasm localization and size. Rectangular scleral pocket is built 2/3 times as large as sclera thickness which base is turned from the limb. Several electrodes manufactured from a metal of platinum group are introduced into intraocular neoplasm structure via the built scleral pocket. Next to it, intraocular neoplasm electrochemical destruction is carried out in changing electrodes polarity with current intensity of 100 mA during 1-10 min, and the electrodes are removed. Superficial scleral flap is returned to its place and fixed with interrupted sutures. 0.1-2% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transpupillary laser radiation of 661-666 nm large wavelength is applied at a dose of 30-120 J/cm2. the operation is ended with placing sutures on conjunctiva. Platinum, iridium or rhodium are used as the metals of platinum group. The number of electrodes is equal to 4-8. 0.1-1% khlorin solution, selected from group containing photolon, radachlorine or photoditazine, is additionally repeatedly intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2.

EFFECT: complete destruction of neoplasm; excluded tumor recurrence; reduced risk of tumor cells dissemination.

3 cl, 3 dwg

Up!