Extraction of copper from aqueous solutions

 

(57) Abstract:

The method can be applied in ferrous and non-ferrous metallurgy, as well as for the treatment of industrial and domestic wastewater. The extraction of copper is carried out using as the extractant vegetable oil at pH 4 and regulation of pH for a period of not more than 4.5 hours the Method allows to increase the copper recovery in concurrent economy and safety of the process. table 1.

Extraction of copper from aqueous solutions relates to the field of extraction of substances organic extractants from aqueous solutions and can be used in ferrous and nonferrous metallurgy, as well as for the treatment of industrial and domestic wastewater.

Known methods of extracting copper extraction of neutral organic solvents (tributyl phosphate, alcohols, ethers), cation-exchange organic solvents [Bubnov C. K., and others. Theory and practice of mining for combined methods of leaching.- Alma-ATA, 1992, S. 213-215].

The disadvantages of this method is the relatively high cost of used extractants, their volatility and the ability to fire.

The closest technical solution Jamiroquai and 2 9 palmitic in the range of pH 4-8 [Bubnov C. K., and others. Theory and practice of mining for combined methods of leaching.- Alma-ATA, 1992, S. 522.].

The disadvantage of this method is the relatively high cost of used extractants.

The objective of the invention is to create an efficient and inexpensive selective method of extracting copper from aqueous solutions using a less volatile solvent.

The technical result that can be achieved by carrying out the invention is highly efficient recovery of copper from aqueous solutions with simultaneous efficiency and safety of the process.

This technical result is achieved by the fact that in the known method of extraction of copper from aqueous solution, comprising the contact of the extractant and the solution, stirring the mixture, settling and separation of the phases, as the extractant used vegetable oil, and the extraction is carried out at pH 4 and the regulation of pH in a period of not more than 4.5 hours

The essence of the method is illustrated in the data table, which shows the copper concentration in the original solution, extraction time at a given pH value, concentrationin concentrations of copper in the organic and aqueous phases, also specify the color of the organic and aqueous phase after extraction.

In the examples of the initial aqueous solution contains copper sulfate with a concentration of 500 mg/DM3copper and pH of 5.15.

As extractant used vegetable oils: sunflower, olive, corn and soy.

The extractant was added to the original solution of copper sulphate volume 190 cm3at 10 cm3(5% vol.). Stirring and maintaining the given value of pH was carried out up until further acid-base characteristics of the system were changed slightly. However, for greater assurance of achieving equilibrium contact organic and aqueous phases was carried out at least one day. Upon reaching equilibrium between the organic and the clarified aqueous phase the organic phase was separated from the water, the latter was determined by the pH value and the residual concentration of copper. To maintain a given pH value of the solution in the extraction process as neutralizers used the solutions of alkali NaOH and acid (H2SO4.

Using the values of the concentrations of copper in aqueous solution - the original and after extraction, the expected ratio rapidlytemperature, presented in the table.

Example 1 (table., p. 1).

As extractant used sunflower oil, sort of "Kuban", unrefined (LLP "South", agricultural production Association, Russia, Armavir).

Set the pH value was maintained within the 4.0 to 4.5 hours later the pH was changed slightly. The best extraction results obtained at pH 5 at the time of extraction is not more than 4.5 hours the Maximum value of the distribution coefficient D = 1004,89 obtained at pH of 11.26. Minimum residual concentration of C = 2 mg/DM3Cu(II) was obtained at pH 9,29.

Precipitates are formed in the following conditions: pH of 5.24 5,99 8,35 to 7.61 9,29 10,45 12,45

The color of the sediment Golub., of turquoise., Golub., Golub., Golub., Golub., coric.

Example 2 (table., p. 2).

As extractant used olive oil, products and packaging ACEITES DEL SUR. S. A. FORMERLY ACEITER V. J. LUCA DETEN AS. A. SEVILLA ESPANA.

Set the pH value was maintained within 0.1 to 4.5 h, in the future, the pH value was changed slightly. The best extraction results obtained at pH 4 at the time of extraction of not more than 4.5 hours, and the distribution coefficients had values D = of 19.72 - 4588,50. The maximum value of D = 4588,50 obtained at pH 7,79 - 8,3 the following conditions:

pH 5,51 of 6.49 10,15 10,42

The color of the sediment Zelenov.-Golub., Golub., Golub., Golub.

Example 3 (table, p. 3).

As extractant used corn oil, manufacturer BIC, Beslan, Russia, the Republic of North Ossetia - Alania.

Set the pH value was maintained within 0,1 - 4,0 h, in the future, the pH value was changed slightly. The best extraction results obtained at pH 4 at the time of extraction of not more than 4 h, the coefficients of the distribution was set to D = up to 20.28 D > 10000. The maximum value of D > 10000 obtained at a pH of 7.36 - 7,70 and 10.4. Minimum residual concentration of C < 1 mg/DM3Cu (II) was obtained at pH of 7.36 - 7,70 and the 10.40.

Sediment turquoise is formed when the pH 5,31.

Example 4 (table, p. 4).

As extractant used soybean oil refined, the manufacturer. Caller ID ALGEMTNT OLIEHANDEL B. V., UTRECHT - HOLLAND.

Set the pH value was maintained within 0.7 to 2.5 h, in the future, the pH value was changed slightly. The best extraction results obtained at pH 5 at the time of extraction is not more than 2.5 hours Minimum residual concentration C = 14 mg/DM3Cu (II) was obtained at pH 5,91.

Precipitates are formed in the following conditions:

the pH of 5.06 5,91 to 7.59 8,05 for 9.64 10,9 11,19

Color OBIT applied to the technological solutions, industrial enterprises sewage, sludge after sedimentation of heavy metals electroplating plants, mine and mine water solutions heap and underground leaching, etc.

The proposed method is compared with the prototype increases the copper recovery in concurrent economy and safety of the process.

Extraction of copper from aqueous solution, comprising contacting the extractant and the solution, stirring the mixture, settling and separation of the phases, characterized in that the extractant used vegetable oil, and the extraction is carried out at pH 4 and the regulation of pH in a period of not more than 4.5 hours

 

Same patents:

The invention relates to methods for processing of spent silver catalysts with obtaining pure silver or solutions of its compounds suitable for the preparation of catalysts

The invention relates to a method of recovering Nickel in one process of the two received pyrometallurgical methods Nickel mattes, one of which contains a significant percentage of iron

The invention relates to the metallurgy of rare metals and can be used when passing the extraction of osmium in the chemical industry in the processing of chromite chemical type monochromats on sintering technology

The invention relates to ferrous metallurgy, in particular to the processing of intermediate products, technologies, and can be applied to metallic materials formed in the process of extracting non-ferrous metals from copper-Nickel ores

The invention relates to metallurgy manganese and can be used in the hydrometallurgical processing of vysokofosforistye carbonate and manganese ore and waste from the production of ferromanganese to obtain manganese concentrate
The invention relates to hydrometallurgy and can be used by companies for extraction of colloidal and finely dispersed forms of metals (gold, platinum, platinum, mercury, amalgams) from ore slurries and wastes of various industries

FIELD: autoclave hydrometallurgy, in particular hydrometallurgical reprocessing sulfide concentrates.

SUBSTANCE: method for reprocessing of sulfide concentrates with high content of pyrrotine includes blending of raw concentrate with mineral stabilizing additive; autoclave oxidative leaching of produced mixture in aqueous pulp under oxygen pressure at temperature above the sulfur melting temperature in presence of surfactant to convert non-iron metals into solution, sulfur - to elementary form, iron - to oxides; deposition of non-iron metal sulfides from oxidized pulp solution followed by recovery of non-iron metal sulfides and elementary sulfur by flotation into multiple sulfur-sulfide concentrate and iron oxides into rock refuse. Alkali or alkali-earth compounds with aluminum silicate are used as stabilizing additive, added at mass ratio of pyrrotine to total silica and alumina content of 1:(0.05-0.33) and mass ratio of copper to pyrrotine <1:55; or at mass ratio of pyrrotine to total silica and alumina content of 1:(0.5-0.8) and mass ratio of copper to pyrrotine 1:55 or more. Pyrrolitine decomposition ratio is at least 95 %, and leaching yield of sulfide mass is not less than during treatment of common pyrrotine concentrate.

EFFECT: improved method for reprocessing of sulfide concentrates.

9 cl, 1 tbl, 4 ex

FIELD: autoclave metallurgy of fused copper-nickel sulfide materials used in reprocessing of copper-nickel mattes and Bessemer mattes.

SUBSTANCE: claimed method includes oxidative atmospheric leaching of grinded material with reversible copper-containing solution from autoclave refining of copper product at elevated temperature and with pulp aeration with oxygen-containing gas for partial nickel conversion into solution and simultaneous copper deposition. Nickel solution is separated from iron and cobalt followed by electroextraction nickel isolation to produce nickel cathodes and reversible nickel anodic liquor. Solid residue from atmospheric leaching is oxidative leached in autoclave under excessive oxidative gas pressure by using copper and sulfuric acid-containing solution. Formed copper product is separated in autoclave from nickel, cobalt and iron with copper sulfate solution at elevated temperature and excessive water steam pressure to produce pulp used in isolating copper by common methods sulfide concentrate collecting platinum group metals and reversible copper-containing solution for atmospheric leaching of raw material. Oxidative atmospheric leaching is carried out using platinum electrode and silver chloride reference electrode at pulp redox potential of (+95)-(+245) mV, temperature of 90-118°C, partial oxygen pressure 0.08-0.25 MPa in presence of sodium sulfate and water-soluble iron ions in ratio iron/sodium sulfate in starting pulp solution of (0.002-0.035):1. Starting mass ratio of copper ions in pulp solution and nickel in solid residue from atmospheric leaching is maintained at (0.02-0.15):1. As sulfate solution for oxidative leaching in autoclave reversible nickel anodic liquor with addition of predetermined copper ion amount is used. Sulfate solution containing copper and sulfuric acid is obtained by addition in reversible nickel anodic liquor calculated amount of copper-containing solution.

EFFECT: copper sulfide concentrate with decreased nickel and iron content; simplified and lower cost equipment; reduced sulfur conversion into solution.

5 cl, 1 tbl, 3 ex

FIELD: metallurgy; complex processing of copper concentrate.

SUBSTANCE: proposed method includes sulphatizing roasting of starting concentrate and leaching-out of cinder at separation of metals; sulphatizing roasting of starting copper concentrate is performed in air at temperature of 500-600°C continued for 980-180 min; cinder thus obtained is leached-out with sulfuric acid solution or water at separation of cake and filtrate; copper is extracted from filtrate by electrolysis. Dried cake is blended with oxidizing agent and chlorides of alkaline and alkaline-earth metals and is subjected to heat treatment at temperature of 450-550°C for obtaining the cake which is leached-out by hydrochloric acid; noble metals are separated from filtrate by sorption method.

EFFECT: enhanced efficiency of extraction of metals; reduced power requirements; enhanced ecological safety.

9 cl, 1 dwg, 1 tbl, 3 ex

FIELD: hydro-metallurgy; reworking iron cakes containing non-ferrous metals, nickel and cobalt in particular; utilization of by-products of hydro-metallurgy for return of valuable components to technological process.

SUBSTANCE: moist cake is subjected to treatment with sulfuric acid in presence of ferric chloride (III) introduced in the amount of 4.5-7.5 mass-% of FeCl3 relative to Fe2O3 contained in pulp. Then, iron is reduced to bivalent state by sodium sulfite solution at concentration of 150-260 g/l at mass ratio of Fe2O3:Na2SO3=(0.18-0.23):1 at simultaneous deposition of iron in form of ferric sulfite (II) which is subjected to thermolysis in boiling mode continued for 0.5-1.5 h for forming hydrated ferrous oxide (II) which is separated from solution by filtration containing ions of non-ferrous metals; then, it is washed and subjected to heat treatment at 400-440°C for 0.5-1.5 h for forming ferric oxide (III). Thermolysis of ferrous oxide (II) may be performed under rarefaction; sulfur dioxide separated at this is neutralized with soda for obtaining sodium sulfite solution which is directed to iron reduction stage. Ferric chloride (III) solution may be obtained through treatment of part of iron cake in the amount of 3.5-5.5 mass-% of concentrated hydrochloric acid taken in stoichiometric amount relative to iron contained in cake. Proposed method makes it possible to increase extraction of non-ferrous metals iron cake to 96.5-98.5% at simultaneous obtaining ferric oxide (III) powder possessing pigment properties at reduced content of admixtures of non-ferrous metals.

EFFECT: facilitated procedure.

6 cl, 6 ex

FIELD: metallurgy; hydrochemical methods of a complex processing of a multicomponent, polymetallic scrap.

SUBSTANCE: the invention is pertaining to the field of metallurgy, in particular, to the hydrochemical methods of a complex processing of a multicomponent, polymetallic scrap used in nonferrous metallurgy with extraction of valuable components and production of various commercial products. The technical result at reprocessing and neutralization of wastes of production of titanium tetrachloride consists in concentration of radioactive metals in the "head" of the process, transfer of the secondary wastes of production in an ecologically secure form suitable for a long-term entombment and-or storing, as well as in production of an additional commercial products - deficient and expensive black thermo- resistant inorganic pigments based on iron oxides, manganese and copper oxides. The method provides for a discharge of the spent melt of titanium chlorates into water; concentrating of a pulp by circulation; the pulp thickening; settling of metals oxyhydrates from the clarified solutions in succession in three stages: on the first stage - conduct a settling at pH = 3.-5.0 with separation of the formed settling of hydroxides of chrome, aluminum and scandium from the solution; on the second stage - conduct settling at presence of an oxidizing agent at pH = 2.5-3.5 within 20-50 hours with separation of the settling; on the third stage - conduct settling at pH = 9.5-11.0. The pulp at its circulation and concentration is added with sodium sulfite in amount of 5 - 15 g/dm3, then after circulation the pulp is treated with a solution of barium chloride in amount of 10-20 g/dm3 for cosettling of ions of thorium and radium, in the formed pulp of the first stage of settling introduce a high-molecular flocculant, and before settling process on the third stage of the process the solution is previously mixed with copper(II)-containing solution formed after lixiviation of a fusion cake of the process of cleanout of the industrial titanium tetrachloride from vanadium oxychloride by copper powder, then the produced settling of iron, manganese and copper oxyhydrates is filtered off, cleansed, dried and calcined at the temperature of 400-700°C.

EFFECT: the invention allows to concentrate radioactive metals in the "head" of the process, to transfer the process secondary wastes in the ecologically secure deficient and expensive black thermo-resistant inorganic pigments.

5 cl, 1 ex

FIELD: extraction of zinc from zinc ore by means of halogenide-based leaching-out solution; removal of manganese from halogenide solutions of zinc and other metals.

SUBSTANCE: extraction of metallic zinc from zinc mineral includes the following stages: leaching-out of zinc mineral with solution containing halogenide compound of two or more halogenides, electrolysis of solution for obtaining metallic zinc and generation of halogenide compound and return of electrolyzed solution containing halogenide compound to leaching-out stage. Part of electrolyzed solution may be removed in form of flow escaping from cathode section of electrolyte cell of electrolysis process and may be treated for removal of manganese in form of manganese dioxide by addition of limestone and halogenide compound from anode section of electrolysis process. In this case pH and Eh of solution may be controlled by method enhancing formation of sediment of manganese dioxide as compared with formation of zinc sediment. Proposed method is characterized by low operational and capital outlays as compared with well-known methods, extraction of noble metals from solutions, tolerance to low-grade and contaminated concentrates.

EFFECT: reduced power requirements; avoidance of emission of liquid and toxic gases; low temperature and atmospheric pressure in carrying-out operations.

20 cl, 4 dwg, 6 tbl, 9 ex

FIELD: chemistry of organophosphorus compounds, chemical technology.

SUBSTANCE: invention relates to novel compounds used for extraction of rare-earth metal ions and comprising phosphoneamide compound represented by he formula [1]: wherein R1 means aryl group, aralkyl group under condition that each group can comprise a substitute chosen from alkoxy-groups; R2 means alkyl group, alkenyl group, aryl group, aralkyl group under condition that each group can comprise a substitute chosen from alkyl groups, alkoxy-groups; R3 means hydrogen atom, aryl group, aralkyl group under condition that each group can comprise a substitute chosen from alkyl groups, alkoxy-groups, halogen atoms; and two radical R can be combined to form alkylene group. Also, invention relates to a method for extraction of rare-earth metal ions and to a method for reverse extraction of rare-earth metal ions. Invention provides preparing novel phosphoneamide compounds and method for extraction and reverse extraction of rare-earth metal ions.

EFFECT: improved preparing method, valuable properties of compounds.

3 cl, 4 tbl, 44 ex

FIELD: chemistry.

SUBSTANCE: method for rhenium isolation implies passing rhenium-containg solution through strongly-basic anion-exchange resin and elution of adsorbed rhenium with high-concentration aqueous solution of hydrochloric acid. Anion-exchange resin is treated with an oxidising aqueous solution, where hydrogen peroxide is used as an oxidiser.

EFFECT: increase in ion exchanger service life.

10 cl, 7 ex

FIELD: chemistry.

SUBSTANCE: present invention rests on capability of metal ions to be extracted in stratified system of water, ammonium chloride, polyethyleneglycol ethers of synthetic fatty acid monoethanolamides (sintamide-5) of the general formula CnH2n+1CONH(CH2CH2O)mH (n=10-16; m=5-6) at the following component ratio, in mass %: ammonium chloride - 2-25; sintamide-5 - 5-45; water - up to 100.

EFFECT: quantitative extraction of thallium and gallium ions from water solutions without use of highly inflammable and toxic substances.

1 tbl, 2 dwg, 2 ex

FIELD: metallurgy.

SUBSTANCE: invention concerns manufacturing of radionuclides for industry, science, nuclear medicine, especially radioimmunotherapy. Particularly it concerns method of receiving actinium -227 and thorium -228 from treated by neutrons in reactor radium-226. Method includes irradiation of target containing of metallic capsule in which there is located reaction vessel, containing radium-226 in the form of compound. Then it is implemented unsealing of target's metallic capsule, dissolving of received radium. From solution it is separated by means of precipitation, and then it is implemented regeneration, preparation to new irradiation and extraction of actinium-227 and thorium-228 from solution. At that irradiation, dissolving, radium separation, its regeneration and preparation to new irradiation are implemented in the form of its united chemical form - radium bromide, in the same reaction vessel made of platinum. Method provides reusing of the same platinum vessel for receiving of actinium-227 and thorium-228 from one portion of radium by recycling of irradiation and extraction in the same vessel. Separation of metallic capsule by means of dissolving provides saving of mechanical integrity of platinum reaction vessel for each new irradiation cycle and extraction.

EFFECT: increasing of radiationally-environmental safety of process, excluding operations of increased radiation hazard.

2 cl, 2 ex

Up!