A device for removing cataracts

 

(57) Abstract:

Usage: in medicine, in particular in ophthalmology for extracapsular cataract extraction. The inventive device containing two isolated one from another camera and dual-cannula, the first channel which is connected with the first chamber made in the form of a rigid hollow cylinder, and the second channel through the elastic tube is connected with the second camera, the second camera is made in the form of an elastic cylinder is placed inside a rigid hollow cylinder. Dual cannula is made with a coaxial arrangement of its channels, one of which is directly connected with the cavity of the rigid hollow cylinder, the second through flexible tube with an elastic cylinder. The cavity of the rigid hollow cylinder is connected with the external environment through an elastic tube. Under elastic tubes on the surface of a rigid hollow cylinder has protrusions for pressing the fingers of elastic tubes for regulation regimes irrigation-aspiration during cataract removal masses. For filling elastic bladder irrigation fluid and ready the device for use and, if necessary, and repeat the rigid hollow cylinder is called metally sealing seal of elastic material. 4 C.p. f-crystals, 2 Il.

The invention relates to medicine, in particular to ophthalmology, and can be used for extracapsular cataract extraction.

The simplest and most affordable option techniques of extracapsular cataract extraction is the method with the use of two tubes that are inserted in the anterior chamber of the eye between the joints (1). Each of the cannulas are connected through an elastic tube with his syringe. During the operation, the assistant pumps the fluid in the anterior chamber of the eye through the first cannula, through another cannula in the surgeon's hand, is the aspiration of cataract masses. A significant drawback of the above method is the inability of synchronous interaction between the surgeon and the assistant for precise control modes irrigation-aspiration and their prompt action in emergency situations that may lead to a change in progress and complications (such as rupture of the posterior capsule of the lens of the bag and the loss in the anterior chamber of the eye vitreous body).

A device for removal of a cataract, made in the form of two-way syringe having two sealed chamber below the piston and above (2). Nl the spine, how is pressed from the other. The syringe wear coaxial cannula, one of the channels through which the elastic tube is connected to the compartment syringe intended for the aspiration of cataract masses. The whole operation is performed by a single surgeon without the participation of an assistant. Significant disadvantages of the above devices are the need of the application of a sufficiently large efforts of the hands of the surgeon to move the plunger of the syringe during the operation, and the inability to quickly change modes irrigation-aspiration in emergency situations and to eliminate the risk of complications (such as rupture of the posterior capsule of the lens bag with prolapse of the vitreous in the anterior chamber).

The closest to the proposed invention, the technical solution chosen as a prototype, is a device for removing cataracts (3), made in the form of a combined syringe containing two hollow cylinder, facing one another open ends and rigidly fixed between the connecting bracket length one piston rod. The piston rods are rigidly connected to each other via a metal ring in which the work is placed the thumb of the surgeon. The syringe is oznacenim for aspiration of cataract masses. When the movement of the rods in the longitudinal direction, both pistons simultaneously moved within each of the hollow cylinders. One of the hollow cylinders suck as much fluid as is pressed from the other. Significant disadvantages of the above devices is the complexity of the design, the need for application of a sufficiently large efforts of the hands of the surgeon to move the piston in the hollow cylinders during the operation, and the inability to quickly change modes irrigation-aspiration in emergency situations and exceptions of the threat of complications (such as rupture of the posterior capsule of the lens bag with prolapse of the vitreous body in front of the camera when it is "sucking" to one of the channels of the cannula).

The technical result that is achievable with the use of the invention is the exclusion of complications during cataract removal masses during extracapsular cataract extraction by providing ease of management regimes irrigation-aspiration devices and significantly reduce the mass of the structure.

This is achieved by the fact that the device has two cameras and two-channel cannula, the first channel which is directly connected to the first casualsize with the external environment and the elastic locking seal; the second channel through the elastic tube is connected with the second camera, made in the form of an elastic cylinder, located within a rigid hollow cylinder. The two-way cannula is made with coaxial disposition of the channel, the inner channel is the first channel and the second external channel. Elastic tube attached on the outer surface of the rigid hollow cylinder. In addition, on the outer surface of the rigid hollow cylinder made projections with the possibility of their interaction with the side surfaces of the respective elastic tube. Shut-off seal is made of self-sealing material (e.g. silicone) puncture (for example, the injection needle during filling of irrigation liquid inside the elastic balloon and removing it to prevent depressurization of the device.

In Fig.1 shows an external view of the device of Fig.2 is a section a-A.

The device consists of a rigid hollow cylinder 1, the elastic cylinder 2, is placed within a rigid hollow cylinder 1. When this rigid hollow cylinder 1 is directly connected with the internal channel 3 channel cannula, and the elastic cylinder 2 through an elastic tube 5 with its message with the external environment through cut elastic tube 7, fixed on its outer surface. On the outer surface of the rigid hollow cylinder 1 has protrusions 8 and 9 with the possibility of their interaction with the side surfaces of the elastic tubes 5 and 7 for dosed compression fingers of one hand. At the end of a rigid hollow cylinder 1 is shut-off seal 10.

A rigid hollow cylinder 1 and two-channel cannula can be made of plastic and elastic cylinder 2, a flexible tube 5, 7 and locking the seal 10 from silicone rubber that provides a significant weight reduction of the entire device.

The volume of irrigation fluid (20 ml) filling the flexible container 2 is sufficient for complete and effective removal of cataract masses.

Shut-off seal device 10 may be made in the form of a sealed end of a rigid hollow cylinder 1 in the factory with a pre-filled sterile irrigation fluid elastic cylinder 2, which prevents reuse of the device (the device is disposable), and therefore, the task of preventing the spread of HIV infection or serum hepatitis.

Essential otlichaete rigid hollow cylinder 1. When the flow of irrigation fluid from the elastic cylinder 2 through the channel 4 of the cannula within a rigid hollow cylinder 1 creates a sparse space, ensuring the absorption of irrigation fluid into the cavity of a rigid hollow cylinder 1. This results in the effect of irrigation-aspiration, in automatic mode, which is regulated by the lungs dosed prijatelj the fingers of the surgeon elastic tubes 5 and 7 to the respective protrusions 8 and 9, a rigid hollow cylinder.

The operation of the device is as follows.

Produce cataract incision according to standard methods. Cut and remove the anterior capsule of the lens of the bag, remove the core of the lens. Cataract incision partially seal the seams in the center of the cut leave unsealed area.

Pre elastic cylinder 2 devices fill the irrigation fluid. For this assistant (func.the honey.the nurse or the surgeon himself) presses the flexible tube 5 to the ledge 9, with the other hand pierces the locking elastic seal 10 of the injection needle of the syringe with the irrigation fluid under pressure fills the entire volume of the elastic cylinder 2, and then retrieves injection is a (for example, made of silicone). Otherwise, when removing the injection needle of the shut-off seal depressurized devices in General.

Then, through the unsealed area of the incision in the anterior chamber of the eye injected dual cannula. To restore the volume of the chambers of the eye provide the device in the mode of irrigation, which is released from the compression elastic tube 5. The irrigation liquid in the flexible tube 5 through the outer channel of the cannula 4 is supplied into the cavity of the eye, filling the volume of its cameras. Next, pressing the elastic tube 7 to tab 8, block the message hard hollow cylinder 1 with the external environment, resulting in it occurs the vacuum, providing aspirate the irrigation fluid from cataract masses of the cavity of the eye through the inner channel 3 of the cannula, with the simultaneous flow of irrigation fluid from the elastic cylinder 2 through an elastic tube 5 through the outer channel 4 of the cannula into the cavity of the eye, performing its volume. When this operation is performed in the mode of simultaneous irrigation-aspiration.

At the stage of removal of cataract masses regulation regimes irrigation-aspiration provide easy dosed pressing Manuli tissue of the iris or the lens capsule elastic tube 7 is released from being pressed by the protrusion 8, "relieving the vacuum in the cavity of the rigid hollow cylinder 1. Thus, the operation of the device is performed in mode only irrigation, and caught in the channel 3 of the cannula also it can easily be removed.

Thus, the device simply by design has small weight and dimensions, in General, easy to use, especially in the regulation of modes of irrigation and aspiration, including in emergency intraoperative situations, making completely eliminated any complications when using the device. The device can be configured as a single use.

1. A DEVICE FOR REMOVING CATARACTS, containing two cameras and two-channel cannula, the first channel which is connected with the first chamber made in the form of a rigid hollow cylinder, and the second channel through the elastic tube is connected with the second camera, wherein the second chamber is in the form of a flexible bladder located within a rigid hollow cylinder.

2. The device under item 1, characterized in that the two-channel cannula is made with a coaxial arrangement of its channels.

3. The device according to PP.1 and 2, characterized in that the rigid hollow cylinder has an additional turn that elastic tube mounted on the outer surface of the rigid hollow cylinder, you made the tabs with the possibility of their interaction with the side surfaces of the respective elastic tube.

5. The device according to PP.1 to 3, characterized in that on the front end of the rigid hollow cylinder installed shut-off seal, made of self-sealing material.

 

Same patents:

Syringe // 2033196
The invention relates to medical technology and relates to a device which automatically bezdeystvuete hypodermic needle of the syringe after its use, and it automatically does so equipped syringes re-unused

Syringe // 2029567
The invention relates to medical equipment, namely, devices for injection of drug solutions

Injector // 2007193

Syringe // 2006232
The invention relates to the field of medical equipment and can be used for injection
The invention relates to medicine, in particular to ophthalmology, and can be used in the surgical treatment of hyperopia using the transplant of the cornea of a patient with high myopia to perform hyperopic of Keratomileusis eye of another patient

FIELD: medicine.

SUBSTANCE: method involves introducing 0.1-0.3 ml of photosensitizing gel preliminarily activated with laser radiation, after having removed neovascular membrane. The photosensitizing gel is based on a viscoelastic of hyaluronic acid containing khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-2% by mass. The photosensitizing gel is in vitro activated with laser radiation having wavelength of 661-666 nm during 3-10 min with total radiation dose being equal to 100-600 J/cm2. The gel is introduced immediately after being activated. To compress the retina, vitreous cavity is filled with perfluororganic compound or air to be further substituted with silicon oil. The operation is ended with placing sutures on sclerotomy and conjunctiva areas. Compounds like chealon, viscoate or hyatulon are used as viscoelastic based on hyaluronic acid. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity.

EFFECT: excluded recurrences of surgically removed neovascular membrane and development of proliferative retinopathy and retina detachment; retained vision function.

3 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: method involves introducing 0.1-0.3 ml of photosensitizing gel preliminarily activated with laser radiation, after having removed neovascular membrane. The photosensitizing gel is based on a viscoelastic of hyaluronic acid containing khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-2% by mass. The photosensitizing gel is in vitro activated with laser radiation having wavelength of 661-666 nm during 3-10 min with total radiation dose being equal to 100-600 J/cm2. The gel is introduced immediately after being activated. To compress the retina, vitreous cavity is filled with perfluororganic compound or air to be further substituted with silicon oil. The operation is ended with placing sutures on sclerotomy and conjunctiva areas. Compounds like chealon, viscoate or hyatulon are used as viscoelastic based on hyaluronic acid. Perfluormetylcyclohexylperidin, perfluortributylamine or perfluorpolyester or like are used as the perfluororganic compound for filling vitreous cavity.

EFFECT: excluded recurrences of surgically removed neovascular membrane and development of proliferative retinopathy and retina detachment; retained vision function.

3 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva. Direct muscle is exposed and separated. Forceps is applied to the separated muscle 4-7 cm far from the place of its attachment to sclera. The muscle is notched to 1/2 of its width 1-2 mm far from the forceps on the proximal side. The muscle is bluntly exfoliated. Muscle flap is turned to after cutting it from sclera. The flap end is sutured to sclera 1-5 mm distal from the previous attachment place. Eyeball is displaced in conjunctival sack to opposite side with respect to the feeble muscle. Interrupted sutures are placed on conjunctiva incision.

EFFECT: enhanced effectiveness in correcting large squint angles.

4 dwg

FIELD: medicine.

SUBSTANCE: method involves cutting off external wall of Schlemm's canal on the whole width extent of internal scleral flap bed after making non-penetrating deep sclerectomy operation. At least three drains are entirely introduced into Schlemm's canal lumen and arranged all over the whole circumference of the Schlemm's canal. Hydrated hydrogel is used as draining polymer material. The hydrogel contains 0.5-5.0% aminocaproic acid solution, etamzylate solution and diprospan solution.

EFFECT: increased and retained hypotensive action; increased distance between internal and external wall of Schlemm's canal; reduced risk of traumatic complications in implanting drains; avoided inflammatory response of eye structures.

1 dwg

FIELD: medicine; medical engineering.

SUBSTANCE: method involves introducing device for fixing retina rupture edges into vitreous cavity after having done subtotal vitrectomy. The device has a pair of microsurgical needles connected to each other with surgical thread. Required number of needle pairs is introduced in succession to have required number of straight segments for fixing rupture edge. Needle ends are brought out in pairs together with thread to external sclera surface and cut, and the thread ends are fixed near the sclera surface.

EFFECT: reduced risk of traumatic complications; reliability of retina rupture edges fixation.

3 cl

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva and Tenon's capsule of 3-4 mm in size in choroid hemangioma projection to sclera 3-4 mm far from limb. Tunnel is built between sclera and Tenon's capsule to extrasclerally introduce flexible polymer magnetolaser implant through the tunnel to the place, the choroid hemangioma is localized, after performing transscleral diaphanoscopic adjustment of choroid hemangioma localization and size, under visual control using guidance beam. The implant has permanent ring-shaped magnet in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 2-3 mTesla units intensity. It is arranged with its north pole turned towards the choroid hemangioma so that extrascleral implant laser radiator disposition. The other end of the implant is sutured to sclera 5-6 mm far from the limb with two interrupted sutures through prefabricated openings. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. 0.1-1% khlorin solution is injected in intravenous bolus dose of 0.8-1.1 mg/kg as photosensitizer and visual control of choroid hemangioma cells fluorescence and fluorescent diagnosis methods are applied. After saturating choroid hemangioma with the photosensitizer to maximum level, transscleral choroid hemangioma laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm with total radiation dose being equal to 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the intraocular neoplasm, repeated laser irradiation of the choroid hemangioma is carried out with radiation dose of 30-60 J/cm2.

EFFECT: enhanced effectiveness of treatment.

4 cl

FIELD: medicine.

SUBSTANCE: method involves making incision in conjunctiva and Tenon's capsule of 3-4 mm in size in choroid hemangioma projection to sclera 3-4 mm far from limb. Tunnel is built between sclera and Tenon's capsule to extrasclerally introduce flexible polymer magnetolaser implant through the tunnel to the place, the choroid hemangioma is localized, after performing transscleral diaphanoscopic adjustment of choroid hemangioma localization and size, under visual control using guidance beam. The implant has permanent ring-shaped magnet in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The permanent implant magnet is axially magnetized and produces permanent magnetic field of 2-3 mTesla units intensity. It is arranged with its north pole turned towards the choroid hemangioma so that extrascleral implant laser radiator disposition. The other end of the implant is sutured to sclera 5-6 mm far from the limb with two interrupted sutures through prefabricated openings. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. 0.1-1% khlorin solution is injected in intravenous bolus dose of 0.8-1.1 mg/kg as photosensitizer and visual control of choroid hemangioma cells fluorescence and fluorescent diagnosis methods are applied. After saturating choroid hemangioma with the photosensitizer to maximum level, transscleral choroid hemangioma laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm with total radiation dose being equal to 30-120 J/cm2. The flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, samarium-iron-nitrogen or neodymium-iron-boron system material. The photosensitizer is repeatedly intravenously introduced at the same dose in 2-3 days after the first laser radiation treatment. Visual intraocular neoplasm cells fluorescence control is carried out using fluorescent diagnosis techniques. Maximum level of saturation with the photosensitizer being achieved in the intraocular neoplasm, repeated laser irradiation of the choroid hemangioma is carried out with radiation dose of 30-60 J/cm2.

EFFECT: enhanced effectiveness of treatment.

4 cl

FIELD: medicine.

SUBSTANCE: method involves creating tunnel between sclera and Tenon's capsule in intraocular neoplasm projection. Intraocular neoplasm localization and size is adjusted by applying transscleral diaphanoscopic examination method. 0.1-0.3 ml of photosensitizing gel based on viscoelastic of hyaluronic acid, selected from group containing chealon, viscoate or hyatulon, is transsclerally introduced into intraocular neoplasm structure using special purpose needle in dosed manner. The photosensitizing gel contains khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-1% by mass. Flexible polymer magnetolaser implant is extrasclerally introduced into the built tunnel in intraocular neoplasm projection zone under visual control using guidance beam. The implant has permanent ring-shaped magnet axially magnetized and producing permanent magnetic field of 3-4 mTesla units intensity, in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The implant is arranged with its north pole turned towards the intraocular neoplasm so that implant laser radiator lens is extrasclerally arranged in intraocular neoplasm projection zone. The implant light guide is sutured to sclera 5-6 mm far from the limb with single interrupted suture. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transscleral intraocular neoplasm laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm. The treatment course being over, the flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, neodymium-iron-boron or samarium-iron-nitrogen. 0.1-1% khlorin solution as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is additionally intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg and repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2 15-20 min later during 30-90 s.

EFFECT: complete destruction of neoplasm; excluded its further growth.

4 cl

FIELD: medicine.

SUBSTANCE: method involves creating tunnel between sclera and Tenon's capsule in intraocular neoplasm projection. Intraocular neoplasm localization and size is adjusted by applying transscleral diaphanoscopic examination method. 0.1-0.3 ml of photosensitizing gel based on viscoelastic of hyaluronic acid, selected from group containing chealon, viscoate or hyatulon, is transsclerally introduced into intraocular neoplasm structure using special purpose needle in dosed manner. The photosensitizing gel contains khlorin, selected from group containing photolon, radachlorine or photoditazine in the amount of 0.1-1% by mass. Flexible polymer magnetolaser implant is extrasclerally introduced into the built tunnel in intraocular neoplasm projection zone under visual control using guidance beam. The implant has permanent ring-shaped magnet axially magnetized and producing permanent magnetic field of 3-4 mTesla units intensity, in the center of which a short focus scattering lens of laser radiator is fixed. The lens is connected to light guide in soft flexible envelope. The implant is arranged with its north pole turned towards the intraocular neoplasm so that implant laser radiator lens is extrasclerally arranged in intraocular neoplasm projection zone. The implant light guide is sutured to sclera 5-6 mm far from the limb with single interrupted suture. The implant is covered with conjunctiva and relaxation sutures are placed over it. Light guide outlet is attached to temple using any known method. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transscleral intraocular neoplasm laser radiation treatment is carried out via laser light guide and implant lens using divergent laser radiation at wavelength of 661-666 nm. The treatment course being over, the flexible polymer magnetolaser implant is removed and sutures are placed on conjunctiva. Permanent magnet of the flexible polymer magnetolaser implant is manufactured from samarium-cobalt, neodymium-iron-boron or samarium-iron-nitrogen. 0.1-1% khlorin solution as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is additionally intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg and repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2 15-20 min later during 30-90 s.

EFFECT: complete destruction of neoplasm; excluded its further growth.

4 cl

FIELD: medicine.

SUBSTANCE: method involves applying transscleral diaphanoscopic examination method for adjusting intraocular neoplasm localization and size. Rectangular scleral pocket is built 2/3 times as large as sclera thickness which base is turned from the limb. Several electrodes manufactured from a metal of platinum group are introduced into intraocular neoplasm structure via the built scleral pocket. Next to it, intraocular neoplasm electrochemical destruction is carried out in changing electrodes polarity with current intensity of 100 mA during 1-10 min, and the electrodes are removed. Superficial scleral flap is returned to its place and fixed with interrupted sutures. 0.1-2% aqueous solution of khlorin as photosensitizer, selected from group containing photolon, radachlorine or photoditazine, is intravenously introduced at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, transpupillary laser radiation of 661-666 nm large wavelength is applied at a dose of 30-120 J/cm2. the operation is ended with placing sutures on conjunctiva. Platinum, iridium or rhodium are used as the metals of platinum group. The number of electrodes is equal to 4-8. 0.1-1% khlorin solution, selected from group containing photolon, radachlorine or photoditazine, is additionally repeatedly intravenously introduced in 2-3 days at a dose of 0.8-1.1 mg/kg. Visual control of intraocular neoplasm cells is carried out by applying fluorescence and fluorescent diagnosis methods. After saturating the intraocular neoplasm with the photosensitizer to maximum saturation level, repeated laser irradiation of the intraocular neoplasm is carried out with radiation dose of 30-45 J/cm2.

EFFECT: complete destruction of neoplasm; excluded tumor recurrence; reduced risk of tumor cells dissemination.

3 cl, 3 dwg

FIELD: medical engineering.

SUBSTANCE: device has sealed reservoirs, containing substances, and piston mechanism, having piston cylinder, piston and piston rod. Device for moving liquid between the reservoirs is mounted in piston cylinder lumen. The device has separating piston and compression unit arranged in series. The unit designed as casing or carcass is mounted in projection of its external cylindrical part along the perimeter. Hollow internal lumen of has exit to piston projection inward from its external perimeter. The separating piston makes two connections with the piston cylinder and compression unit at the same time. The separating piston is movable into compression unit lumen with compression or change in shape taking place at the same time. The compression unit allows to make communication between reservoirs.

EFFECT: simplified design.

5 cl, 8 dwg

Safety syringe // 2255768

FIELD: medicinal equipment, in particular, safety syringes.

SUBSTANCE: safety syringe has cylinder with axial through opening, retainer provided within front end of cylinder, piston, needle hub, and needle. Piston positioned for sliding inside cylinder is equipped with sealing rubber member, head and flange disposed on piston in opposed relation to head. Needle hub is detachably engaged with cylinder and is provided with axial opening corresponding to that of cylinder and communicated therewith, and feeding opening adapted for communication with axial openings of needle hub and cylinder and for providing insertion of piston head. Needle has sleeve engaged with front head part of needle hub, and metal pipe engaged with sleeve. Piston has neck portion defined at its front end and arranged so that rubber sealing member tightly adheres thereto, and spatially inclined teeth. Head is made conical. Needle hub has conical front end with protrusions mating with cylinder retaining device upon rotation of cylinder. Slots are provided for engagement with inclined teeth. Bead provided in peripheral portion of feeding opening is mating with piston conical head. Protrusions are released from finger clamps upon rotation, when inclined teeth are engaged with slots.

EFFECT: simplified construction and convenient use.

4 cl, 12 dwg

Syringe-container // 2264231

FIELD: medical equipment, in particular, devices for injections, formed as syringes containing medicinal substances.

SUBSTANCE: apparatus is formed as syringe with hermetically sealed reservoirs containing different substances, piston mechanism including piston chamber, piston and piston stem. Chamber clearance with continuous internal surface is formed as successively arranged reservoirs or sectors with different diameters or sections, with one of reservoirs being formed as piston cylinder. Piston chambers are hermetically separated within piston chamber clearance further than line of transition of smaller diameter or other section by movable device.

EFFECT: simplified construction.

2 cl, 5 dwg

FIELD: medicine, in particular, equipment for injections and for taking blood or other liquids from organism, which may be also used in laboratories and enterprises in different branches of industry requiring usage of syringes for injecting liquids.

SUBSTANCE: syringe has first part made in the form of cylinder and equipped with first front end including inlet and outlet for liquid and second open end, and second part comprising stem equipped at its front end with piston and at its rear end stop, said second part being positioned for moving between first position wherein stem piston is located at site proximate front end of first part, and second position wherein stem piston is located at site distal from front end of first part. Second part also comprises pusher whose rear end has supporting surface adapted for applying pressure in first axial direction to move second part from second position to first position. First part has at its second end supporting member protruding transverse to first part and made integral therewith. Supporting member has first supporting surface for applying pressure in second axial direction opposite to first axial direction for moving second part from second position to first position, and rear supporting surface for applying pressure in said first axial direction to move second part from first position to second position. Pusher has at its front end two protruding members joined to stem through connecting links so as to define window restricted with stem stop, supporting member of first part, protruding members and rear end of pusher. Protruding members at front end of pusher are terminated with two supporting surfaces for applying pressure in second axial direction to move second part from first position to second position. First part has at least two longitudinal grooves extending from second end of first part to front end and adapted for accommodation of connecting links of pusher. Supporting member of first part has through opening shaped to provide for axial passage of protruding members.

EFFECT: convenient use owing to providing suction and liquid introduction steps for single operation.

17 cl, 7 dwg

FIELD: medicine; surgery, nephrology; neurology; clinical pharmacology.

SUBSTANCE: method can be used at injection introductions of medicinal aids into deep layers of soft tissues of lumbar area. Ultrasonic detector is applied to selected area. Area to be found in depth of tissues is detected by means of device on the screen. Different areas of skin are subject to periodical pressing by finger and appearance of wave-shaped reversible changes in skin is observed on screen under point of pressing. Part of skin is marked for injection introduction from which part the deformation wave reaches selected area more precise. Distance from skin to the area is measured and needle is introduced for the depth. 1-1,5 ml of solution is pressed out of syringe. Correctness of introduction is estimated from ultrasonic visualization of localization point which appears in tissues of medicinal infiltrate. Procedure is repeated till correct introduction is performed and that the required medicinal solutions are introduced.

EFFECT: improved precision; prevention of complications.

1 ex

FIELD: medicine; medical engineering.

SUBSTANCE: method involves setting syringe body in horizontal position with additional end piece turned upward. Sealing caps are taken off from the principal and additional end pieces. Space is opened between syringe body and sealing member on the piston. The piston is moved into utmost position near tip for introducing gas. Additional rod is returned to initial position and syringe body is set in vertical position with the end piece turned down. Dosed volume of liquid drug is taken to graduation line. The principal and additional end pieces are tightly closed with cap. The syringe body is set in vertical position with the end piece turned down before usage. Space is opened between syringe body and sealing member on the piston by rotating the additional rod. The piston is displaced to dosed mark taking into account the line connecting the principal and additional graduation line. The additional rod is returned to the initial position. The liquid drug is mixed w the gas substance during 15 min. Then, sealing cap is taken off from the end piece. Needle is put on. Gas substance not mixed with the liquid drug is removed by displacing piston to dosed mark along liquid drug graduation mark.

EFFECT: reduced risk of traumatic complications.

3 cl, 2 dwg

Up!