|
|
Method of vanillin manufacturing Method consists in air oxygen oxidation of lignin, obtained by fermentative hydrolysis of wood of coniferous species or wood, affected by brown or mottled rot, with content of lignin 40-90 wt % in water-alkali medium at higher temperatures and pressure. The process is carried out in presence of catalysts on the basis of copper hydroxide with continuous supply of alkali solution into reactor for 1-150 minutes. |
|
Method for direct conversion of lower c1-c4 paraffins to oxygenates Invention relates to a method for direct conversion of lower C1-C4 paraffins to oxygenates such as alcohols and aldehydes, which are valuable intermediate products of organic synthesis and can be used as components of engine fuel and/or starting material for producing synthetic gasoline and other engine fuels. The method involves passing a mixture consisting of a lower paraffin or oxygen, diluted with an inert gas or air or pure oxygen, through a catalyst bed at temperature not higher than 350°C. The catalyst used is a catalyst system for heterogeneous reactions, which contains microfibre of a high-silica support and at least one active element, the active element being in form of either a MeOxHalv composite or a EwMezOxHaly composite, wherein the element Me in both composites is selected from a group which includes transition metals of groups 5-12 and periods 4 and 5, or elements of lanthanum or lanthanide groups or, preferably, ruthenium; element Hal is one of the halogens: fluorine, chlorine, bromine, iodine, but preferably chlorine; element E in the EwMezOxHaly composite is selected from a group which includes alkali, alkali-earth elements, or hydrogen, and indices w, z, x and y are weight fractions of elements in given composites and can vary in the following ranges: z - from 0.12 to 0.80, x - from 0.013 to 0.34, y - from 0.14 to 0.74, w - from 0 to 0.50. |
|
Invention relates to a method of conducting a continuous process of producing acrolein, acrylic acid or mixture thereof from propane in a stable operating mode, according to which: A) propane in a first reaction zone A undergoes heterogeneously catalysed dehydrogenation in the presence of molecular oxygen to obtain a gaseous mixture of products A containing propane and propylene, B) the gaseous mixture of products A, if needed, is fed into a first separation zone A in which a portion or more of components different from propane and propylene is separated therefrom and a gaseous mixture of products A' containing propane and propylene remaining after separation is obtained, C) the gaseous mixture of products A or gaseous mixture of products A' is fed into at least one oxidation reactor of the second reaction zone B, in which propylene contained therein undergoes partial selective heterogeneously catalysed gas-phase oxidation with molecular oxygen to obtain a gaseous mixture of products B, which contains acrolein, acrylic acid or mixture thereof as the desired product, unconverted propane, excess molecular oxygen and, if needed, unconverted propylene, D) in the second separation zone B, the desired product contained therein is separated from the gaseous mixture of products B, and at least a portion of the remaining gas containing propane, molecular oxygen and, if needed, unconverted propylene is returned to the reaction zone A as circulation gas 1 containing molecular oxygen, E) fresh propane is fed into at least one continuous flow process zone selected from a group comprising reaction zone A, separation zone A, reaction zone B and separation zone B, where the said fresh propane is fed at a rate characterised by a given stationary value when realising the process in a stable operating mode, and F) content of molecular oxygen in the gaseous mixture of products B is continuously determined and said value is compared with the desired stationary value needed to realise the process in stable operating mode, characterised by that if at a certain moment in time, content of molecular oxygen in the gaseous mixture of products B exceeds the given desired stationary value, fresh propane is fed into the process right away at feed rate higher than its stationary value, and if at a certain moment in time, content of molecular oxygen in the gaseous mixture of products B is lower than the corresponding given desired stationary value, fresh propane is fed into the process right away at feed rate lower than its stationary value. |
|
Method of producing acrolein, acrylic acid or mixture thereof from propane According to method A) an input stream of the reaction gaseous mixture A is fed into the input of the first reaction zone A, where the input stream is obtained by merging at least four different gaseous initial streams 1, 2, 3 and 4, where the gaseous initial streams 1 and 2 contain propane, gaseous initial stream 4 is molecular hydrogen and gaseous initial stream 3 is fresh propane, the input stream of the reaction gaseous mixture A is passed at least through one catalyst layer of the first reaction zone A on which, if needed, when feeding other gaseous streams, as a result of heterogeneous catalytic partial dehydrogenation of propane, a stream of products of gaseous mixture A forms, which contains propane and propylene, the stream of products of gaseous mixture A comes out of the first reaction zone A through the corresponding outlet, while splitting said stream into two partial streams 1 and 2 of products of the gaseous mixture A with identical composition, and the partial stream 1 of products of the gaseous mixture A is returned to the first reaction zone A as the gaseous initial stream 1, the partial stream 2 of products of the gaseous mixture A, if needed, is directed to the first separation zone A, in which a portion or more of components contained therein, which are different from propane and propylene, are separated, as a result of which a stream of products of gaseous mixture A' which contains propane and propylene, B) partial stream 2 of products of the gaseous mixture A or a stream of products of gaseous mixture A' is used in a second reaction zone B for supplying at least one oxidation reactor, in which propylene contained in the partial stream 2 of products of gaseous mixture A or in the stream of products of gaseous mixture A' undergoes selective heterogeneously catalysed partial gas-phase oxidation with molecular oxygen to obtain a stream of products of a gaseous mixture B, which contains acrolein, acrylic acid or mixture thereof as the desired product, unconverted propane and, if needed, unconverted propylene, as well as molecular oxygen, the stream of products of gaseous mixture B comes out of reaction zone B, the desired product contained in separation zone B is separated in said separation zone B and at least a portion of residual gas formed after separation and containing unconverted propane, molecular oxygen and, if needed, unconverted propylene, is returned to reaction zone A as gaseous initial stream 2. Gaseous initial streams 2, 3 and 4 as well as, if needed, additional gaseous initial streams different from the gaseous initial stream 1, are merged into a gaseous stream of the working mixture, after which, using this gaseous stream of the working mixture as the working stream, a jet pump is activated, said pump having a nozzle, a mixing section, a diffuser and a suction inlet. Movement of the working stream which is throttled through the nozzle, the mixing section and the diffuser to the input of the first reaction zone A, as well as the suction effect of the suction inlet takes place in the direction of outlet of the stream of products of gaseous mixture A from the first reaction zone A. The pressure drop created in the suction nozzle with splitting of the stream of products of the gaseous mixture A into two partial streams 1 and 2 results in suction of the partial stream 1 of products of the gaseous mixture A, its movement through the diffuser with simultaneous mixture with the working stream on the mixing section and inlet of the formed reaction stream of gaseous mixture A at its inlet point into the first reaction zone A, characterised by that a gaseous initial mixed stream is formed first by merging in random sequence gaseous initial streams 2 and 3, as well as, if needed, additional gaseous initial streams different from gaseous initial streams 1 and 4, and only after that the gaseous initial stream 4 is added to the formed gaseous initial mixed stream to obtain a gaseous mixed working stream. |
|
4,4'-difluorobenzophenone synthesis method Present invention relates to a method for synthesis of 4,4'-difluorobenzophenone, the main raw product for synthesis of aromatic polyester-ketones. The method involves a first step where fluorobenzene reacts with formaldehyde under conditions for catalysis with organic sulphonic acids to form difluorodiphenylmethane. The product is extracted and oxidised with nitric acid at the second step to 4,4'-difluorobenzophenone. |
|
Method of producing 1-acetyl-4- propionylbenzene Invention relates to a method of producing 1-acetyl-4-propionylbenzene, which is starting material for making medicinal agents and dipyrrolylbenzenes, used in synthesis of conducting interlinked polymer systems, which can be used as electrode materials for energy accumulators, biosensors, photoluminescent materials, electroluminescent materials and electromagnetic shields. The method involves using propionyl chloride and ethylbenzene as starting material in an organic solvent medium, and carrying out the reaction in the presence of anhydrous aluminium chloride at temperature between 25 and 40°C for 20 to 60 minutes, with formation of an intermediate product 1-propionyl-4-ethylbenzene, which is separated and oxidised with potassium permanganate in an aqueous solution of magnesium nitrate at temperature between 65 and 80°C for 3 to 5 hours, forming the desired product which is extracted using toluene, with subsequent recrystallisation from n-hexane or petroleum ether. The method uses non-toxic and readily available components, which makes the proposed method suitable for industrial use. |
|
1-hydroxyadamantanon-4-one preparation method Invention provides a method for preparation of 1-hydroxyadamantanon-4-one (Kemantan), which can be used as immunostimulating drug effective to treat vascular system diseases, limbs autoimmune genesis extremities, tuberculosis, infection-allergic bronchial asthma, chronic aphthous stomatitis, herpes, as well as anticataleptic agent and intermediate for synthesis of 1,4-bifunctional derivatives of adamantane. Method comprises oxidation of adamantanone by means of sulfuric/nitric acid mixture in the form of complex oxidation-activating system including sulfuric, nitric, and acetic acids, molar ratio adamantanone/sulfuric acid/nitric acid/acetic acid being 1: (1.75) : (8.43-12.62) : (0.25-1). Process is carried out when stepwise raising temperature: first, at 35°C, nitric acid is measured out to reaction mass for 1-1.5 h, after which temperature is raised to 50-55°C for 12-16 h. |
|
Method for preparing xanthophyll Invention relates to the improved method for preparing xanthophylls, in particular, to a method for preparing mono- or polyoxidized xanthophylls. Method involves oxidation of carotinoid in a lower oxidation state as compared with xanthophylls to be prepared from hydrogen peroxide aqueous solution and organic solvent wherein indicated solvent represents a water-insoluble solvent. Indicated reaction is carried out in the presence of iodine-containing compound chosen from the group including iodine, iodine halide derivative and metal iodide. Method allows avoiding using danger and expensive substances and formation of large amounts of salts. The proposed invention is used mainly for oxidation of beta-carotene to form canthaxanthine and oxidation of lutein and zeaxanthine wherein the end substances represent important agents used in preparing food compositions and supplements in animal fodder. |
|
Method for production of carbonyl compounds Claimed method includes reaction of nitrous oxide with alkenes in presence of inert gas as diluent. Reaction is carried out in gas phase at 401-700°C and under pressure of 2-300 atm. Target compounds represent value intermediates for precise and base organic synthesis. |
Another patent 2551154.
© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English. |