Bitumen emulsions for application in oil industry

FIELD: chemistry.

SUBSTANCE: in the method for control of filtration losses in a formation comprising pumping an aqueous liquid containing an emulsion stabilized with a surfactant and having an internal bitumen phase, the bitumen emulsion is converted in the formation by addition of an emulsifying agent initiator. The invention is developed in dependent points of the formula.

EFFECT: increased efficiency of treatment.

14 cl, 3 ex, 5 dwg

 



 

Same patents:

FIELD: oil and gas industry.

SUBSTANCE: invention relates to compositions for wells treatment for use in oil industry. Composition for well treatment containing chemical for well treatment adsorbed using water-insoluble adsorbent, where composition is produced by the well treatment chemical deposition from liquid, at that the well treatment chemical is adsorbed on the water-insoluble adsorbent, and where the well treatment chemical is deposited upon metal salt presence. Well treatment liquid containing the above mentioned composition and carrying liquid. Method of the underground reservoir or wellbore treatment including the above mentioned well treatment liquid injection in the reservoir or wellbore. Method to monitor the well treatment chemical release in the wellbore including the above composition injection in the wellbore. Invention is developed in subclaims.

EFFECT: improved efficiency of treatment in environments with high pH.

38 cl, 3 dwg, 4 ex

FIELD: mining.

SUBSTANCE: method comprises a test injection of fracturing fluid and a pack of fracturing fluid with proppant, correction of the fracturing project and carrying out the main fracturing process. At that in the high-permeability reservoirs having an absolute permeability of not less than 100 mD, the main process of hydraulic fracturing is carried out using standard working fluid flow rate of 2.2 m3/min to 4.0 m3/min. When pressing the proppant-gel mixture the stepwise reduction of flow rate is carried out with the reduction step in the range of 0.1 m3/min to 0.5 m3/min, but to the value of not less than 2.0 m3/min. The final concentration of proppant is set of not less than 800 kg/m3.

EFFECT: increase in efficiency of intensification of operation of the well by creating a wider and conducting crack in the bottom-hole area of the layer.

1 tbl

FIELD: oil and gas industry.

SUBSTANCE: method involves landing of tubing string with packer to a well, packer seating, hydraulic fracture liquid injection by the tubing string with packer to a low-permeable formation, hydraulic fracturing of the low-permeability formation with further fracture fixation by injection of liquid carrier with propping agent via the tubing string, pressure relief in the well. Before tubing string landing to the well, water-bearing interlayer interval of the low-permeable formation is perforated to form perforation holes. Then at the wellhead the tubing string is filled upwards from the bottom with a plug, lower hole rows, packer, upper hole rows and additional packer. Inside the tubing string, a mobile bushing with radial channels is inserted to seal lower hole rows of the tubing string tightly in initial position and connecting the tubing string via upper hole rows and perforation holes to the ware-bearing interlayer. A seat is installed inside the mobile bushing, the mobile bushing and the seat are fixated in initial position against the tubing string by a differential shear element. The tubing string is landed to the well, packer and additional packer are seated in the well so as to shot water-bearing interlayer off tightly at two sides, upper water0bearing interlayer is isolated by injection and flushing of water isolation composition via the tubing string through upper hole rows to the water-bearing interlayer through perforation holes under pressure twice lower than hydraulic fracture pressure of the formation, process break is made for solidification of the water isolation composition, then a ball is dropped to the tubing string from wellhead, and overpressure is formed in the tubing string. First the shear element is destroyed, and under impact of overpressure above the ball, mobile bushing is shifted down along the tubing string to a stop against the tubing string plug, overpressure increase in the tubing string is continued, and the shear element is destroyed again. The seat is brought down to a stop against the plug under impact of overpressure above the ball. Upper hole rows of the tubing string are shut off tightly by the mobile bushing, and lower hole rows are connected to the tubing string by radial channels of the mobile bushing.

EFFECT: improved efficiency of hydraulic fracturing.

2 dwg

FIELD: oil-and-gas industry.

SUBSTANCE: proposed method comprises drilling the well horizontal shaft in oil-saturate section of production bed, cementing of annulus between casing and bed rock. Casing pipe is perforated in said well shaft oriented in azimuth by intervals with the help of slot perforator lowered in the well on string in a single trip. String with packer is lowered in the well to fit the packer in place. Fracturing fluid is injected via said string for hydrofracturing in said horizontal well shaft. Well shaft us drilled in the bed parallel with direction of minimum main strain. Plug is fitted at string lower end and two packers are arranged at flexing pipe string. Note here that through holes are made at the latter. Said flexing pipe string with packers is lowered into well shaft for hydraulic fracturing via perforated intervals by cutting of every interval of perforation on both sides. Bed fracturing is started from horizontal well interval nearby the bottom and fluid is forced via flexible pipe string via through holes at flow rate of 2 m3/min to produce transverse fractures from perforation interval relative to well shaft. Note here that fracturing fluid is composed of hydrocarbon-based cross-linked gel. Made fractures are secured by injection of proppant of 12/18 mesh fraction with cross-linked gel, a carrier fluid. Packers are removed to displace flexible pipe string for hydraulic fracturing of the bed in the next perforation interval. Then, above jobs are reiterated. Then, flexible piper string with packers is withdrawn from the well to lower pipe string therein. Packer is fixed at well vertical part for hydraulic fracturing by injection of fluid via horizontal well shaft to produce lengthwise fractures at flow rate of 8 m3/min. Linear gel is used as fracturing fluid. Said lengthwise fractures are secured by injection of ground quartz with linear gel as carrier fluid.

EFFECT: higher efficiency of fracturing.

2 dwg

FIELD: oil and gas industry.

SUBSTANCE: group of inventions is referred to intensification of hydrocarbons production from formation by hydraulic fracturing. The method of proppant induced aggregation in hydraulic fracture crack includes makeup of the proppant carrier fluid, which viscosity is increased by usage of polymer gel capable of syneresis; injection of the proppant suspension and the above fluid to the well; initiation of gel syneresis with formation of proppant aggregations. According to the second version the method includes initiation of polyelectrolyte complex formation with proppant aggregations. According to the third version the method includes makeup of the proppant carrier fluid containing polymer at temperature less than its critical solution temperature; injection of the proppant suspension and the above fluid to the underground formation at temperature more than the lowest limit of polymer critical solution temperature with formation of proppant aggregations.

EFFECT: inhomogeneous distribution of proppant in hydraulic fracture cracks, which increases conductivity and productivity of the well.

31 cl, 2 tbl, 12 ex, 5 dwg

FIELD: oil and gas industry.

SUBSTANCE: treatment method of underground hydrocarbon-containing formations involves the following: a) provision of a composition including a thickening initiator measuring pH, and a polymer capable of hydration in a certain pH range; b) pumping of a composition with pH value beyond the limits of the above pH range; c) activation of an action of pH thickening initiator for displacement of pH composition to the above range of its values, and d) provision of a possibility of increasing viscosity of the composition and shaping of a plug. According to another version, a processing method of underground hydrocarbon-containing formations involves the following: a) provision of a composition containing a polymer capable of hydration in a certain pH range; b) pumping of the composition with pH value beyond the limits of the above pH range; c) provision of a pH changing thickening initiator; d) activation of the action of the thickening initiator for displacement of pH composition to the above range of its values, and e) provision of a possibility of increasing viscosity of a composition and shaping of a plug. The invention has been developed in dependent claims.

EFFECT: improving efficiency of initiation and control of plug formation.

15 cl, 5 ex, 3 dwg

FIELD: oil and gas industry.

SUBSTANCE: in a carbonaceous oil deposit development method that includes drilling of horizontal wells with a core sampling from the productive formation, performance of core laboratory tests, acid treatment and multiple hydraulic fracturing of the formation in these wells, according to the invention the core is sampled at different sections along the whole length of the horizontal shaft. The sampled core is subjected to the laboratory tests to determine the fracturing pressure, at that the sections are identified along the shaft where the minimum fracturing pressure Pmin, MPa, and the maximum fracturing pressure Pmax, MPa is required. Each section is treated by acid; at that the acid concentration for each section is set as identical. During the acid treatment each treated section of the formation is isolated temporarily by packers from the remaining part of the well. Then multiple proppant hydraulic fracturing of the formation is made under pressure that does not exceed Pmax. At that at the sections, where Pmax is required the acid treatment is performed in a volume of Qmax, m3/m, at the sections where Pmin is required the acid treatment is performed in a volume not exceeding 10% of the maximum value. At the remaining sections the volume of the injected acid is defined proportionally to the obtained fracturing pressure in compliance with the following ratio: Qn=QminQmaxPminPmax(PnPmin)+Qmin, where Qn is the specific volume per meter of the thickness, which is required for the injection to the nth section of the formation along the horizontal shaft, m3/m, Pn is the required fracturing pressure at the nth section of the formation along the horizontal shaft, MPa.

EFFECT: improved sweep efficiency and increased oil recovery of the oil deposit.

1 dwg

FIELD: oil and gas industry.

SUBSTANCE: method includes running of production string with packer in to the well, setting of the packer, hydraulic fracturing by injecting fracturing fluid through production string with packer to the producing reservoir with further proppant injecting through perforated interval in the low-permeable bed, pressure releasing from the well. Additionally perforated interval in the low-permeable bed is isolated temporary, the interval of clay layer is perforated using alternating charges of large diameter and deep invasion; then the production string with packer is lowered so that the lower end of the production string is at the level of clay layer roof, the packer is set in the well, the low-permeable bed is fractured with formation of cracks by injection of fracturing fluid along the production string through perforated intervals in clay layer. Then bank of oil-based cross-linked gel is injected to cracks in volume of 3-5 m3 with flow rate of 10 m3/min. Proppant moisture is used as proppant. Then cracks are reinforced by dosed injection of fracturing fluid and proppant mixture starting with concentration of 400 kg/m3 for proppant mixture with stepped increase of its concentration in fracturing fluid per 200 kg/m3 for each dose and flow rate of 5 m3/min. The proppant mixture is made at the wellhead with the following ratio of components, wt %: proppant 12/40 mesh - 30%; proppant 18/20 mesh - 30%; quartz flour - 40%. Upon completion of hydraulic fracturing of low-permeable bed temporary isolation is removed from the perforated interval of the low-permeable bed with formation of hydraulic connection between the borehole and created fracture.

EFFECT: improved reliability of hydraulic fracturing for low-permeable bed with clay layers and bottom water.

1 dwg

FIELD: oil and gas industry.

SUBSTANCE: in the method of well operation stimulation including test injection of breakdown fluid and package of breakdown fluid with proppant, correction of the breakdown project and performance of fracturing in low-permeable reservoirs having absolute permeability less than 1mD, hydraulic fracturing is made with injection of flush fluid on the basis of 1.0-3.0 m3 per 1 t of proppant using proppant fractions, which include only fine fraction with size less than 30/60 mesh with final concentration of proppant less than 300 kg/m3; at injection of the fluid flow rate of 3.5 m3/min and more and concentration of gel formation is set less than 2 kg/m3, with final underflush of the mixture in volume of 0.1-0.5 m3.

EFFECT: simulation of the well opening the low-permeable formation.

3 ex

FIELD: mining.

SUBSTANCE: method involves drilling of a horizontal well, lowering to a vertical part of the well of a casing string and its cementing, lowering of a pipe string with a packer to a well, seating of the packer, formation of fractures of formation hydraulic fracturing (FHF) in the horizontal well shaft by pumping via the pipe string of fracturing fluid, and fixation of fractures by pumping of carrier fluid with proppant. The horizontal shaft is drilled perpendicular to direction of minimum main stress. FHF is performed by pumping of fracturing fluid with flow rate of 2-3 m3/min with formation of a longitudinal fracture in the formation relative to the open horizontal part of the well; crosslinked gel is used as fracturing fluid; then, fixation of a longitudinal fracture is performed by pumping via the pipe string of proppant of large fraction with carrier fluid - crosslinked gel. Then, FHF is performed by pumping of fracturing fluid with flow rate of 7-9 m3/min; line gel is used as fracturing fluid; after that, fixation of branched FHF fractures is performed by pumping of proppant of small fraction with carrier fluid - line gel.

EFFECT: improving FHF efficiency and reliability.

2 dwg

FIELD: oil and gas industry.

SUBSTANCE: in a method for the displacement of high-viscosity oil from an oil deposit in a permafrost zone including injection of a heated polymer solution through injectors, flushing of the polymer solution up to the bottomhole of the producer by brine water with the displacement of high-viscosity oil from the stratum with its further extraction and transportation through the producer hole to the surface, the hydrophobic polymer solution (HPS) is used and this HPS is obtained by gauging of water-methanol injection (WMI) with the ratio of water:methanol equal to 60:40 at the ratio of the water-soluble polymer:WMI equal to 1:1, HPS is heated up to the reservoir temperature and the ratio of its viscosity to the viscosity of lock oil is not less than 1:10 at the pressure of flushing that does not exceed the pressure of bottom water and gas cap, at that water-soluble cellulose derivatives or polyacrylamide or hydrolysed polyacrylonitrile are used as the water-soluble polymer.

EFFECT: ensuring the displacement of high-viscosity oil without the contamination of the production stratum and without thawing of permafrost rock surrounding the wells.

FIELD: oil and gas industry.

SUBSTANCE: in a development method for a deposit of high-viscosity oil or bitumen including construction of the upper injector and the lower producer with horizontal sections placed one over the other the above sections are equipped with filters, at that a pipe string of a pipe-in-pipe type with inner spaces isolated from each other by packers is run down to the injector while output openings of the pipe strings are placed in the filter and spread along the length of the horizontal section dividing it into heating zones, injection of a heat carrier through the horizontal injector with the stratum heating, creation of a steam chamber and extraction of the product through the horizontal producer, at that thermograms of the steam chambers are recorded, the heating state is analyzed regarding the evenness of heating and availability of temperature peaks, considering the obtained thermograms even heating of the steam chamber is made by changing the heating zones and delivery of a required quantity of the heat carrier to the respective pipe string in order to exclude the breakthrough of the heat carrier to the producer through the most heated zone, at construction of the injector with a horizontal section for evener heating of the stratum the filters and pipe strings are made with an increased total cross-section area of the openings from the beginning of the horizontal section in the stratum towards the bottomhole. During operation upon a 3-5 time increase in viscosity of the extracted product injection of the heat carrier to the injector is stopped and a gaseous hydrocarbon solvent is injected through the respective pipe string to the heating zone with the least temperature until the temperature of the extracted product is reduced per 10-25%. Thereafter injection cycles of vapour and gaseous hydrocarbon solution to the respective heating zones and product extraction are repeated.

EFFECT: enabling continuous control over the change in viscosity of the extracted product, potential regulation of the injection process, even heating of the stratum, increased output of high-viscosity oil and bitumen with the simultaneous reduction of material costs and energy consumption.

1 dwg

FIELD: oil and gas industry.

SUBSTANCE: method of filter cake removal of bottom hole area of low-permeable low-temperature terrigenous reservoir located near the permafrost rocks comprises sequential injection through the column of oil-well tubing to the bottom hole area of mudded low-permeable low-temperature terrigenous reservoir of methanol in a volume of 1-2 m3 per 1 m of perforated thickness, phosphoric acid of 5-6% concentration with technological thermal equilibrium time of not more than 0.5 hours. Then aerated dispersed aqueous solution of hydrogen peroxide of low concentration of not more than 10-15 wt % is injected in the volume of 2-3 m3 per 1 m of the perforated thickness with forcing the orthophosphoric acid in a distal part of the reservoir. Then aerated dispersed aqueous solution of hydrogen peroxide is injected and forced again in the reservoir using the gas condensate with short-term technological thermal equilibrium time of not more than 0.5-1.0 h. Then removal and taking away of the remaining part of the aerated dispersed aqueous solution of hydrogen peroxide from the reservoir and the well to the surface is carried out. Then the well is developed by feeding to the well of inert gas, such as nitrogen, worked out, and the well is brought into production. At that injection of aerated dispersed aqueous solution of hydrogen peroxide is carried out by pulsed-cyclical method with alternate pumping the aqueous solution of hydrogen peroxide and inert gas, such as nitrogen.

EFFECT: increased permeability of dried bottom hole area of the reservoir, increase in the degree of filter cake removal of the bottom hole area and increase in productivity of the wells.

3 ex

FIELD: oil and gas industry.

SUBSTANCE: dry mixture comprises a copolymer of acrylamide and acrylic acid - 71.4-83.3 wt %, paraformaldehyde - 10.0-17.8 wt % and resorcinol - 6.3-11.4 wt % or copolymer of acrylamide and acrylic acid - 69.5-82.5 wt %, paraformaldehyde - 9.5-17.7 wt %, resorcinol - 6.1-10.6 wt %, and aerosil - 0.9-3.0 wt %. The gelling composition is prepared by dissolving any of the said compounds in water. At that the gelling composition without aerosil can also be obtained by the introduction of paraformaldehyde in water immediately after the copolymer of acrylamide and acrylic acid, and resorcinol - after complete dissolution of the copolymer of acrylamide and acrylic acid. The resulting gelling composition comprises a copolymer of acrylamide and acrylic acid - 0.17-0.80 wt %, paraformaldehyde - 0.03-0.20 wt %, resorcinol - 0.02-0.12 wt %, water - the rest, or a copolymer of acrylamide and acrylic acid - 0.17-0.80 wt %, paraformaldehyde - 0.03-0.20 wt %, resorcinol - 0.02-0.12 wt %, aerosil - 0.01-0.03 wt %, water - the rest.

EFFECT: increasing the efficiency and manufacturability of the gelling composition by ensuring the solubility in water used for its preparation of the dry mixture, simplifying of preparation of the composition at high mechanical and thermal resistance.

3 cl, 3 tbl, 5 dwg, 8 ex

FIELD: oil and gas industry.

SUBSTANCE: method involves installation of oil-well tubing string with well sucker-rod pump in a well. Additionally, the string features a liner with filter, heating cable along external surface from wellhead to the well sucker-rod pump, capillary well pipeline from wellhead to a depth below the well sucker-rod pump, entering inner space of the liner. Well operation involves simultaneous product extraction through oil-well tubing string by the well sucker-rod pump. Electric current runs over the heating cable. Mix of Intat asphaltene, resin and paraffin sediment solvent and Rekod demulsifier is injected via capillary well pipeline. Demulsifier to solvent ratio is (1:18)-(1:22). Cable with maximum heating temperature up to 105°C and maximum power up to 60 kWh is used as the heating cable.

EFFECT: enhanced efficiency of viscous oil emulsion production.

1 ex, 1 dwg

FIELD: oil-and-gas industry.

SUBSTANCE: group of inventions relates to development and accumulation of biogenic gas in anaerobic geological formation containing carbon-bearing material. According to the method of increase of biogenic gas blowdown in anaerobic geological formation with carbon-bearing material the access to this anaerobic formation is provided. The rate of blow down of biogenic gases in this anaerobic formation is increased, for example, by holding of accumulated biogenic gases and their keeping in the anaerobic formation. The flowing of reservoir water into the anaerobic formation is provided after increase of biogenic gas blow down. Flowing of reservoir water comprises the circulation of reservoir water between the anaerobic formation reservoir and carbon-bearing material and back into the reservoir.

EFFECT: improvement of efficiency of biogenic gas production.

23 cl, 6 dwg

FIELD: oil and gas industry.

SUBSTANCE: method of high-viscosity oil well development and operation involves landing of tubing string with well pump with power cable to the well, and landing of capillary tube parallel to the power cable and attached to external surface of the tubing string by clamps. Oil or oil-containing reservoir fluid is produced. Chemical reagent is injected to the well from a tank by a metering pump through the capillary tube. Power cable is inserted to the well through cable gland. Power cable and capillary tube are protected against direct contact with internal well surface by protectors. Electric heater with extension unit, well pump with power cable and sleeve with radial hole to which the capillary tube is connected are inserted into the tubing upwards from the bottom at the wellhead. Electric heater extension unit is connected to the power cable of well pump. The tubing is landed to the well so that its shoe is located at least 2 m lower than bottom of high-viscosity oil reservoir, and electric heater is facing perforation interval of the high-viscosity oil reservoir. At the wellhead, power cable is connected to well pump and electric heater control stations and inserted to the well through cable gland. Capillary tube is inserted to the well through sealed side tap of the well X-mas tree. Electric heater is actuated, and a process break is made for 8 hours to heat bottomhole zone of reservoir in the perforation interval and high-viscosity oil heating at the inlet of well pump. After the process break, well pump is launched simultaneously with the metering pump supplying high-viscosity oil flux via the capillary tube through the radial hole in the sleeve to inner space of the tubing above the well pump.

EFFECT: enhanced well yield, reduced load in the well pump.

1 dwg

FIELD: oil and gas industry.

SUBSTANCE: method of high-viscosity oil or bitumen field development involves construction of two horizontal wells, one above the other, steam injection to the reservoir, reservoir heating by steam pocket formation, steam and hydrocarbon solvent injection to horizontal injector, and product sweeping from horizontal producer. Associated gas is used as hydrocarbon solvent. Steam and associated gas are injected in sequence in cycles. Steam is injected to the reservoir until extracted product viscosity is 3-5 times higher than initial viscosity at the cycle start, associated gas injection is started along with product extraction until extracted product temperature is reduced by 10-25%, then steam and associated gas injection cycles are repeated.

EFFECT: expanded reservoir coverage, higher level of high-viscosity oil and bitumen production along with material and power cost reduction.

1 ex, 1 dwg

FIELD: oil and gas industry.

SUBSTANCE: invention relates to the heavy oil extraction from underground field. Method of the heavy oil extraction from underground field includes: nanoemulsion (oil-in-water) injection to one or more injection wells, extraction of the specified heavy oil from one or more operation wells, where the specified nanoemulsion is produced using the method including: production of the uniform mixture (1) water/oil product with interfacial tension 1 mN/m maximum, containing water in quantity from 65% to 99.9% by weight, with a view to total mixture weight (1), and at least two surface-active substance (SAS) having different hydrophilic-lipophilic balance (HLB), selected from not-ionic, anionic, polymer SAS, preferably not0ionic; these SAS are in such quantity that to make the mixture (1) uniform mixture (1) dilution by the dispersion medium containing water with added at least one SAS selected from the specified SASs; this dispersion medium and SAS quantities are such that nanoemulsion is produced (oil-in-water) having HLB exceeding HLB of the mixture (1). Invention is developed in subclaims.

EFFECT: increased extraction efficiency.

34 cl, 1 dwg, 2 ex

FIELD: oil and gas industry.

SUBSTANCE: group of inventions is related to production of heavy hydrocarbons. In the in situ multistage solvent extraction method of heavy oil from oil pools at first liquids and gases are extracted from zones of contact with heavy oil in order to increase interfacial area of unextracted heavy oil subject to contact with solvent. Then solvent is injected in the form of steam to the above zones in order to increase pressure in the pool up to accumulation of sufficient quantity of solvent in the form of liquid to ensure contact with enlarged interfacial surface of heavy oil. Then the pool is isolated for the period sufficient to ensure diffusion of solvent to unextracted oil through the interfacial surface at ageing stage so that the mixture of solvent and oil with low viscosity is obtained. One or more parameters of the pool are measured to determine the degree of unextracted oil liquefaction in the pool by solvent. Oil extraction from the pool is commenced by gravity drainage when viscosity of oil becomes rather low to flow through the pool to the production well.

EFFECT: maximising liquefaction of heavy oil and maximising its extraction as a result.

19 cl, 11 dwg

FIELD: oil and gas industry.

SUBSTANCE: invention is referred to the oil industry and may be used for the stimulation of hydrocarbon production, in particular, of an oil or gas condensate, in wells, increase in their recovery factor due to the treatment of the bottomhole zone of this production formation penetrated by wells included into the formation development. According to the technique, wellhead sealing is performed. Then the well is shut down by the injection of a fluid blocking inflow from the productive formation. At the initial phase an excess pressure is generated in the well so that it exceeds the hydrostatic pressure of the fluid column affecting the productive formation per a preset value. The pressure in the well is increased further with the generation of pulse series of pressure increase in the mode of resonant oscillations with the preset frequency. Then the blocking fluid in the well is replaced by an operating fluid with the simultaneous generation of the pulse series of pressure increase in the well. The operating fluid is flushed to the productive formation at maintaining the pulse impact mode for the productive formation at another frequency differing from the earlier preset frequency until the pressure increases further in the productive formation at the final phase up to a preset value. Thereupon the pressure is decreased sharply in the well by pulse series with the provision of a break in integrity of a hydraulic medium in the productive formation zone. At that time intervals between the pulses in operations with the pressure increase are accepted as different from the time intervals between the pulses in operations with the pressure decrease.

EFFECT: increasing the production rate and reaching an initial value of the bottomhole zone permeability due to opening of a fracture network in the productive formation with prevailing vertical fractures, increasing mass exchange in the filtration zone and reliability of the filtration zone cleanup from products of man-made colmatation.

9 cl, 1 dwg, 1 ex

Up!