Strengthened clay soil

FIELD: construction.

SUBSTANCE: strengthened clay soil contains cohesive soil, a complex binder, and water in order to provide the desired humidity, steel converter slag from Lipetsk steel mill being used as the main component of the complex binder, as well as Portland cement or Portland slag cement of a strength grade not lower than M300 as a curing activator, at the following component ratio by the solid phase, wt %: said steel slag 10-69, said Portland cement or Portland slag cement 3-7, soil 28-83, and additionally - a chemical additive "Chimston" in an amount of 0.175 wt % of Portland cement or Portland slag cement weight.

EFFECT: increasing the strength, frost resistance, water resistance, reducing the time required to gain the given strength of soils.

10 tbl, 1 ex

 



 

Same patents:

FIELD: construction.

SUBSTANCE: invention relates to construction and can be used for construction of an earth bed and a facility of reinforced road bases on roads of categories I-V in road climatic zones II-V, as well as pavements on roads of categories IV-V as material for construction of earth bed fills and reinforcement of soil bases of construction and other sites. Road-building material containing drilling sludge with density of 1.3 to 1.8 kg/dm3 and with humidity of 30%, cement as the main binding material in the amount of 5-15% of the weight of the mixture, wastes of thermal utilisation of oil sludges (ash slag) with density of 1.2 to 1.6 kg/dm3 in the amount of 30-40% of the mixture weight, mineral filler and a sorbent - complexing agent, where organic fibrous (peat) sorbent is used as the sorbent - complexing agent in the amount of 2-4% of the mixture weight; Portland cement is used as cement; additionally, it contains liquid glass or organohydride-siloxanes, and sand is used as filler, with that, content of sand as a part of material is 5, or 10, or 30 wt %. The invention is developed in subclaims of formula of invention.

EFFECT: reduction of cement consumption; improvement of environmental situation due to utilisation of wastes of drilling and an ash and slag mixture.

4 cl, 4 ex, 7 dwg

FIELD: construction.

SUBSTANCE: device to seal areas of metal-concrete adjacency comprises a plate steel part of protective sealed doors, hatches or flanges of tubular inputs of engineering utilities with holes for injectors. Holes are evenly arranged along the steel part. The device comprises a source of DC current with a rheostat or an autotransformer and an electromagnet. The electromagnet is installed on the steel part, with a coil in the form of a winding from current-conducting wire with insulation and ends of this wire, closed to poles of the source of DC current. The coil of the electromagnet is arranged on a crossbeam of the U-shaped magnetic conductor. The lower part of each stand of the magnetic conductor fully complies with the shape, volume and geometric dimensions of the inner space of the hole for the injector. The height of the lower part of magnetic conductor stands is equal to thickness of the steel part. The distance between centres of cross sections of the electromagnet magnetic conductor stands is equal to double distance between centres of holes for injectors.

EFFECT: device makes it possible to increase quality of sealing, to reduce power inputs and consumption of materials.

3 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to the field of ecology and environmental management, in particular to methods of waterproofing heap leach pads and waste deposits, in particular to the creation of screens of tailing dumps, sludge tanks, solid domestic waste landfills and bulk arrays preventing environmental pollution by toxic components and dusting as a result of infiltration and erosion processes. In the method of the preservation and isolation of anthropogenic deposits, which consists in preparing a waterproofing mixture containing polyethylene wastes, laying it on the surface of the storage area, application to the chilled surface of a drainage layer of a coarse material, preliminarily in screening the bulks on the surface of the array body the slope is created of 2-5° from the centre to the edges, after the creation of the said slope 0.2-0.4 m pugged clay and sealing are applied on the surface of the layer, laying of the waterproofing mixture to the prepared surface is carried out extrusively at a temperature of 180-200°C in bands with the width of 2-2.5 m with mutual 0.15-0.2 m overlapping, the said drainage layer is applied with the thickness of 0.1-0.15 m, and the waterproofing mixture as polyethylene wastes contains the polyethylene wastes of high and low pressure, and additionally - polyisobutylene and carbon black, with the following ratio of components, wt %: polyethylene wastes of high pressure 74-76, polyethylene wastes of low pressure 14-16, polyisobutylene 6-7, carbon black 3-4.

EFFECT: formation of the coating that prevents the infiltration of atmospheric waters and productive solutions from the bodies of piles, dumps, sludge tanks and solid domestic waste landfills, increase in the strength of the said coating.

2 ex

FIELD: construction.

SUBSTANCE: method includes formation of a well, placement of a stretching tight shell in it and supply of sealing substance. The well is formed by driving a pipe with a plug at the end and a stretching tight shell on the outer surface into soil. The sealing substance is supplied into the specified shell via longitudinal slots made in the pipe. The device comprises a working organ and a facility of impact load application to it, comprising a pipe, where a rod is inserted as capable of longitudinal displacement in it and contact with the working element. The stretching tight shell is placed onto the pipe and fixed, and longitudinal slots are made underneath in the pipe. The working element is made in the form of a rod, forming a plug, with a cone-shaped tip at the end and inserted into the guide pipe as capable of limited longitudinal displacement in it. The rod comprises an accessory to prevent fallout from the pipe, and its cone-shaped tip protrudes from the pipe.

EFFECT: increased density of soil by introduction of a stretching tight shell into it, expansion of device capabilities for creation of a pile with a support in a base.

8 cl, 2 dwg

FIELD: construction.

SUBSTANCE: method to produce cracks in clayey waterlogged soils includes drilling of wells, formation of cracks by injection of cracking material into a well, and tamping of wellheads. At the same time burnt lime of grade 1 and 2 is used for cracking. Wells are filled with lime in layers with subsequent ramming and compaction of each layer.

EFFECT: increased effectiveness of formation of stable and resistant cracks in waterlogged clayey soils around a well in radial direction.

FIELD: mining.

SUBSTANCE: method comprises well drilling, cracking by injection into the well of crack-forming material, plugging of hole mouth. Meanwhile the well cross-section is transformed from cylindrical into square, and then layer by layer the well is filled with quicklime with compaction and sealing of each layer. Into the formed cracks in a radial direction from angles of square cross-section well and by means of injector the strengthening solution is injected. The method allows to obtain stable cracks in a radial direction from angles of well square, that results in increase of strengthening volume. Due to wedging action of lime slaking and the stress concentrations the cleavage cracks are formed, the length of which amounts 2-3 lengths of the side of square well, and the width 5-15 mm. At the expense of increase of parameters of cracks in a radial direction from angles of square section well with the subsequent injection of strengthening solution the physico-mechanical properties of the ground are improved, as far as the infilling of all formed cracks results in ground strengthening, that improves bearing capacity of clay saturated soils. Besides the given method allows to work with small-sized and minimum quantity of machinery in any conditions of building.

EFFECT: increase of bearing capacity of clay water-saturated soils.

FIELD: construction.

SUBSTANCE: when creating an anti-filtration screen of a hydraulic structure for storage of industrial wastes, for instance, a sludge reservoir, layers of the screen on the base of the sludge reservoir are formed using a suspension of industrial wastes, containing finely dispersed particles, with compaction of layers. The base of the sludge reservoir is made from clay or loam, compacted, the compacted layer is poured with a water suspension of finely dispersed dust of gas treatment from electrothermal production of silicon and/or siliceous ferroalloys with the solid to liquid ratio within 3÷10:1. The suspension is maintained until absorption into the layer of the sludge reservoir base. The clay or loam layer is laid on top and compacted. The water suspension is poured in the amount of 50-100 l/m2.

EFFECT: invention will make it possible to prevent contamination of soil layer adjacent to storages due to reduction of coefficient of filtration of insulating material, to recycle anthropogenic wastes in the form of a finely dispersed dust of gas treatment of electrically thermal production of silicon or siliceous ferroalloys.

2 cl, 1 tbl

FIELD: chemistry.

SUBSTANCE: invention increases tensile and compression strength of priming coats, as well as water-resistance thereof while reducing binder consumption to 0.003-0.012 wt %. The effect is achieved by using cation-active imidazoline and polyacrylic acid in the composition, which form an insoluble polyelectrolyte interpolymer complex during chemical reaction.

EFFECT: invention relates to a method of producing a stable structural composition based on a priming mixture of clay and sand as natural filler and can be used for industrial purposes for producing moulding agents, accelerated hardening of priming coats and endowing priming coats with hydrophobic properties.

1 tbl

FIELD: construction.

SUBSTANCE: invention relates to construction, namely, to strengthening of soils. In the method of soil strengthening in the area to be strengthened, a compacting agent is supplied from a loading reservoir into soil with a mixing facility located in a device for supply of the compacting agent. The device for supply of the compacting agent is located in connection with a transfer facility, and a facility for mixing for a compacting agent located on the device for supply of the compacting agent, is moved by the transfer facility at choice to any point in the zone, which must be strengthened, in vertical direction (y), horizontal direction (x) and/or in perpendicular to substantially perpendicular direction to the plane stretching via the specified vertical direction and horizontal direction. A support bridge included into the transfer facility is located for passage via the area, which must be strengthened, and in connection with the support bridge the first transfer elements are located for movement of the facility for mixing of the compacting agent in vertical direction (y) and/or horizontal direction (x), and the transfer facility comprises the second transfer elements and the support bridge, and the device for supply of the compacting agent with the facility for mixing is moved by the second transfer elements in perpendicular to substantially perpendicular direction to the plane passing via the specified vertical direction (y) and horizontal direction (x), and providing both ends of the support bridge by the second transfer facilities to maintain the support bridge on the material of the support and/or the soil of the base, as a result of which the distance (A) between the second transfer facilities is adjusted for compliance with the width of the area to be strengthened, in longitudinal direction of the support bridge.

EFFECT: increased stabilisation of soil strengthening, reduced labour intensiveness and material intensity in production of works for soil strengthening.

9 cl, 2 dwg

FIELD: mining operation.

SUBSTANCE: method of protection of karst occurrence comprises drilling wells in the area of karst formation and injection of reinforcing material. While injecting the reinforcing material in the form of a polymer-mineral composition in the rock mass of the area of karst formation two layers are created: the lower insulating-stabilising layer which prevents access of water to the karst at the depth of occurrence of karst rocks and stabilising the situation at the stage of karst formation, located within the boundaries of the sliding wedge, and the upper bearing layer serving as a bearing local layer and corresponding to the width of the lower layer. Drilling wells is carried out sequentially - first inclined well is drilled to the upper transition zone of the geological horizon exposed to karst formation, the polymer-mineral composition with the capacity from 2 to 10 meters is pumped, which forms a lower insulating-stabilising layer, then the inclined well is drilled to contact with the upper boundary of groundwater, and the polymer-mineral composition with the capacity from 2 to 5 meters is pumped, which forms the upper bearing layer. Then the control vertical well is drilled to contact with the upper bearing and the lower insulating-stabilising layer. The core-sample is raised from each layer to check the presence of the polymer-mineral composition. Between the bearing and the insulating-stabilising layers in the rock mass the channel of flow of groundwater from the water collection area to the discharge area is formed, preserving the natural hydrogeological mode in the rock water-bearing mass of the karst formation area.

EFFECT: increase in protective properties of rocks with karst occurrence, improvement of physical and chemical and bearing properties of the soil, increase in the strength properties of the soil, reduction of the possibility of landslides occurrence.

3 dwg

FIELD: construction.

SUBSTANCE: method to produce a gypsum cement pozzolan binder includes hydraulic activation of portland cement with surfactants for 1 minute with subsequent addition of gypsum and pozzolan component and repeated hydraulic activation for 2 minutes in a rotor-pulsation device with speed of shaft rotation of at least 5000 rpm, surfactants are a mixture of aqueous solution of carboxylate polyester "Glenium Ace® 430", a controller of setting and hardening times "BEST-TB" and a homogeneous mix of oligoethoxysiloxanes "Ethyl silicate -40" at the ratio of 1:0.17:0.07, he pozzolan component is metakaolin with hydraulic activity of at least 1000 mg/g at the following ratio of components, wt %: calcined gypsum 56.7-57.4, portland cement 14.6-15.4, specified surfactant 1-1.8, metakaolin 2.7-3.3, water - balance.

EFFECT: increased frost resistance, longer times of composition setting, giving it self-compacting property, increased strength, higher water resistance and reduced water absorption.

2 tbl

FIELD: construction.

SUBSTANCE: method of obtaining of gypsum cement-puzzolan mix includes hydroactivation of portland cement with surfactants for 1 min. with the subsequent adding of gypsum and puzzolan component and repeated hydroactivation within 2 min., in the rotor and pulsation device with a shaft speed of rotation no less than 5000 rpm, the surfactant is a mix of polymeric polycarboxylated ether "Glenium® 115", the setting and cuing time regulator "BEST-TB" and the organic silicon compound "N-octyl sulfosuccinate" in the ratio 1:0.3:0.07, the puzzolan component is a metakaolin with the hydraulic activity no less than 1000 mg/g, at the following ratio of components, by weight %: semi-water gypsum 55.8-56.5, portland cement 14.3-15.4, the named surface-active substance 1.1-1.9, metakaolin 2.5-3.3, water - the rest.

EFFECT: increase of frost resistance, increase of time of mix curing, getting self-sealing ability, increase of flexural and compression strength, increase of water resistance and decrease of water absorption.

2 tbl

FIELD: construction.

SUBSTANCE: method to produce a gypsum cement pozzolan binder includes hydraulic activation of portland cement with surfactants for 1 minute with subsequent addition of gypsum and pozzolan component and repeated hydraulic activation for 2 minutes in a rotor-pulsation device with speed of shaft rotation of at least 5000 rpm, surfactants are a mixture of carboxylate polyester "Odolit-K", a controller of setting and hardening times "BEST-TB" and water emulsion of octyltriethoxysilane "Penta®-818" at the ratio of 1:0.23:0.07, the pozzolan component is metakaolin with hydraulic activity of at least 1000 mg/g at the following ratio of components, wt %: calcined gypsum 57-57.7, portland cement 14.9-15.3, specified surfactant 1.3-1.8, metakaolin 2.7-3.3, water - balance.

EFFECT: increased frost resistance, longer times of mixture setting, giving it self-compacting property, increased strength, higher water resistance and reduced water absorption.

2 tbl

FIELD: ecology.

SUBSTANCE: proposed insulating material comprises clay, calcitic material, oil sludge, and drill cuttings with the following component content, parts by weight: clay 1.0; calcitic material 0.5-5.0; drill cuttings 0.5-3.0; oil sludge 0.5-7.0.

EFFECT: reduction of consumption of natural clays, reduction of wastes of production in construction of motor roads and solid domestic waste landfills, improves the quality of final product.

3 cl, 1 dwg, 8 tbl

FIELD: construction.

SUBSTANCE: method for producing the concrete aggregate includes preparation of mass based on low-melting clays, capable to swell under conditions of heat treatment, its hydration up to 17-23%, formation of granules, melting into the surface of moulded granules of the crushed cement clinker sieved through mesh No. 5, drying, calcining at a temperature of 1100°C, cooling.

EFFECT: increase of the bond strength of aggregate with cement stone.

FIELD: construction.

SUBSTANCE: in this method to produce a dry anti-frost complex additive, including mixing of a plasticising component, a salt component and an intensifier of anti-frost action, the intensifier of anti-frost action is a water-soluble organic component not containing salt-producing functional groups, with the HLB value of 2.8-4.3, which is dried on a carrier - the plasticising component, and the produced powdered product is mixed with the dry salt component to produce the following content of components, wt %: plasticising component - 10-80, salt component - 10-75, intensifier of anti-frost action - 5-15. In the version of the method to produce a dry anti-frost complex additive, including mixing of a plasticising component, a salt component and an intensifier of anti-frost action, the intensifier of anti-frost action is a water-soluble organic component not containing salt-producing functional groups, with the HLB value of 2.8-4.3, which is mixed with the dry plasticising component, and the produced paste-like mass is mixed with the dry salt component to produce loose mass. The invention also relates to composition of the dry anti-frost complex additive produced by above methods.

EFFECT: lower doses of complex anti-frost additives due to increase of their technical efficiency and narrower range of recommended doses for entire temperature range of their application with provision of convenience of their transportation and storage.

7 cl, 2 tbl, 10 ex

FIELD: construction.

SUBSTANCE: invention relates to construction and can be used for construction of an earth bed and a device of reinforced road bases on roads of categories I-V in road climatic zones II-V, as well as pavements on roads of categories IV-V as material for construction of earth bed fills and reinforcement of soil bases of construction and other sites. Improved road-building soil is characterised by the fact that it is obtained from a mixture containing the following, wt %: cement 5-15, waste of thermal utilisation of oil slurries - ash and slag with density of 1.2 to 1.6 kg/dm3 30-40, mineral filler 0-30, peat sorbent 2-4, drilling slurry with density of 1.3 to 1.8 kg/dm3 is the rest.

EFFECT: reduction of consumption of cement and fillers; utilisation of wastes.

7 dwg, 7 ex

FIELD: construction.

SUBSTANCE: previously prepared samples with various quantity of a filler in a highly dispersed condition for a dry construction mix are placed into a hollow part of metal washers, placed on a metal plate, are compacted by any available method under permanent load of up to 5 MPa per 1 cm2 of sample surface for 10-15 seconds, then marks are applied on the surface of each sample in the form of drops of a solution of various concentration, wetting angles of samples are measured θ, a curve of dependence is built cosθ-1=f(1/σl), where σl - surface tension of the liquid, they determine the angle of inclination of this functional dependence a for each sample of different composition, the curve of dependence a is built on quantity of mix components, and by the point of break of the curve of dependence they define the optimal content of a modifier in the tested object.

EFFECT: reduced number of tests and higher accuracy of mixture composition selection.

2 cl, 2 dwg, 1 tbl

FIELD: chemistry.

SUBSTANCE: nanocomposite material contains, wt %: mineral binder 83.7-83.9, mineral filler 2.1-2.3, fraction of carbon nanoparticles 0.00002, distilled water 13.79998-14.19998.

EFFECT: improvement of material characteristics, providing protection from neutron radiation flows, provision of technological mobility of working mixture in the process of pouring construction elements.

4 tbl

FIELD: construction.

SUBSTANCE: decorative facing material includes, wt %: ground sheet glass 75.0-77.0; ground tuff 8.0-10.0; borax 10.0-13.0; ground talc 3.0-4.0. Frost resistance of the material makes at least 25 cycles. Components are dosed in required quantities. Sheet glass (broken glass) previously ground to powdered condition is mixed with borax and tuff and talc ground to powder condition. The produced mass is laid into detachable metal moulds, compacted and sintered at 800-870°C.

EFFECT: increased frost resistance of produced material.

1 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to industry of construction materials and can be used in production of building products and constructions. Raw material mixture for preparation of corrosion-resistant alkali-ash concrete includes binding agent, consisting of liquid glass with silicate modulus n = 0.8-1.2 and density ρ = 1.36-1.40 g/cm3 and produced from ferroalloy production waste - microsilica, containing 13 wt % of admixtures, characterised by true density ρt = 2200-2430 kg/m3 and loss on ignition 1.5-3.1%, and field I fly ash, obtained in combustion of brown coal of KAFEC at Bratsk city TPP-7 and characterised by true density ρt = 2120-2290 kg/m3 and 8-10.5% residue on sieve No. 8, and as filling agent - non-milled dump ash-and-slag mixture, which contains 9% of dump ash with particle size 0.14 mm and smaller and 91% of slag, with grain size, characterised by coarseness modulus Mc = 3.5 with ratio of fraction grains, %: fr. 5 mm 13.0, fr. 2.5 mm 21.5, fr. 1.25 mm 16.0, fr. 0.63 mm 27.5, fr. 0.315 mm 13.0, fr. 0.14 mm and smaller 9.0, with true density ρt = 2520-2730 kg/m3, loss on ignition 7.3-10.4% and breakability strength 15% with the following ratio of raw material mixture components, wt %: said I field ash 20.2-21.3, said liquid glass 14.8-19.2, said non-milled ash-and-slag mixture 60.6-63.9.

EFFECT: increase of corrosion resistance.

1 tbl

Up!