Method of space rocket movement control, while insertion space objects to the orbit

FIELD: aviation.

SUBSTANCE: method of space rocket movement control, while insertion the space objects to the orbit is, that at the given moments of time the current position of the space rocket is determined by means of the navigation system, the remaining flight path with the previous control is predicted by the on-board digital computer and determine the feasibility to provide the terminal flight conditions with the specified accuracy and, if these conditions are not feasible, choose the new control and implement it with the help of the executive bodies until the next, specified time of flight, in addition, choose the new terminal conditions, that are in the of space rocket reachability field, and the new control over the space rocket movement and realise it with the help of the executive bodies until the next, specified time of flight.

EFFECT: increase of the placing space object functioning efficiency.

1 dwg

 



 

Same patents:

FIELD: transport.

SUBSTANCE: invention relates to aerospace engineering and may be used in aerospace clustered rocket bodies. This system comprises space rocket with bilateral control surface to turn and to receive data on rocket section position on water surface and to control flight path. It comprises also launching site, rocket or rocket part launcher for launching for the first and second times. Means for vertical landing on water surface structure. Means for launching and means for varying the rocket orientation with tail forward before landing and reentry to the Earth atmosphere. Besides, it comprises means to rocket engine cutoff and means for primary start and restart of one or more rocker engines. Space rocket is launched with payload from the Earth, Said one or more engines are shutdown at accelerator stage. Upper stage is separated from accelerator stage at preset altitude. Accelerator stage orientation is changed to place movable landing platform on water surface. Data on landing platform is received to control accelerator stage path for displacement to landing platform. One or more rocket engines are restarted at accelerator stage before landing. Pocket part is vertically landed on said platform to carry said part on landing platform or to transit vessel.

EFFECT: vertical landing of rocket shuttle part on water surface landing platform.

20 cl, 2 dwg

FIELD: transport.

SUBSTANCE: invention relates to space and missile equipment and can be used for final carrier rocket stages. A space and missile system (SMS) includes a carrier rocket with a final stage with an outer housing compartment with an intermediate power support frame with outer and inner frames connected to each other by means of fastening elements; a space vehicle with the main fairing with an end frame. The outer diameter of the intermediate support power frame corresponds to the diameter of the end frame of the main fairing.

EFFECT: invention allows attachment of different standard sizes of main fairings with carrier rockets without increasing the time for assembly and preparation for SMS launching.

2 dwg

FIELD: transport.

SUBSTANCE: invention relates to systems for payload delivery to upper air and higher. Proposed system (1) comprises tubular rocket launching cart (2) with friction drives of cable-rope path (26) displacing below two-pin hinge (63) secured to ground and lifted to coaxial portable tube (124, 143) extending to three main fastened cables/ropes (27), their weight being equalized by balloons (164). Then, said cart displaces to connector station (166) retained above the ground in stratosphere by two secondary cables/rope (184) suspended from fastening frame (162) to tensioning of said balloons. Said cart is retained by end grip (196) of said cart directed in two secondary and two tertiary cables/rope (186) to be lifted by bottom lifter (198) guides by secondary cables. Said bottom lifter is retained by top lifter (168) suspended from fastening frame of tensioning balloons. Said cart hooked by lifting ring (183) guided by secondary cables/ropes upward revolves in necessary direction with release of rocket and, fact, recoilless ejection during free fall of said cart downward with engine ignition at safe distance.

EFFECT: safe, non-polluting reusable system.

50 cl, 67 dwg

FIELD: aircraft engineering.

SUBSTANCE: rocket cryogenic upper stage (RCUS) designed according to the tandem layout comprises a fuel tank with an instrument compartment and transitional system for fastening of a spacecraft, an oxidizer tank (OT), intertank spacer, RCUS mid-flight engine (MFE), an intermediate compartment, fire and explosion prevention system, thermal mode maintaining system with the unit of demountable connections of communication with the land equipment and separable inlet pipelines, manifolds for purging of stagnant zones and device for maintaining of the thermal mode of the zone and RCUS equipment, a sealing diaphragm, the detachable head fairing (HF) with windows for detachment of the fire and explosion prevention system and devices for maintaining of the thermal mode of gases for purging of RCUS zone, additional thermal insulation of RCUS zone, a part of separable inlet pipes of manifolds with demountable joints and the unit of demountable connections for communication with the land equipment, an intertank spacer, conjugated with the intertank frame for fastening OT with MFE and conjugated to the top spacer of the separated intermediate compartment with the units of connection and separation with US and HF.

EFFECT: invention allows to improve fire and explosion safety of upper stage.

2 dwg

FIELD: aircraft engineering.

SUBSTANCE: invention can be used for control of travel of space liquid-fuelled rocket (SLFR). After the command for disabling of the mid-flight engine (MFE) of the burnt-out stage MD is switched to the reduced-thrust stage and MD is completely disabled, the rolling travel of the rocket is controlled using two pairs of gas nozzles, the moment of MD final disabling is forecasted, one of pairs of gas nozzles is enabled before the forecasted moment of MD final disabling for creation of the control rolling moment, the pair of gas nozzles are disabled at forecasted moment, and the value of the period of work of pair of gas nozzles is determined before the flight depending on the moment of inertia of the rotating part of the turbo-pump unit with the allowance for attached mass of fuel components with reference to the axis of rotation, an absolute value of the roll moment, created by each pair of the gas nozzles at their enabling, an absolute value of angular speed of rotation of the turbo-pump unit rotor at the reduced-thrust stage, angle between the axis of rotation of the turbo-pump unit rotor and the longitudinal axis of the rocket.

EFFECT: invention allows to improve safety of SLFR flight.

1 dwg

FIELD: physics, navigation.

SUBSTANCE: group of inventions relates to interorbital, including interplanetary, flights of rocket propelled spacecraft. A method of constructing an optimal spacecraft trajectory is based on solving a two-point boundary value problem of the Pontryagin maximum principle and taking into account characteristics of the macro- and microstructure of the cost function. The latter can be the time of flight or fuel consumption during flight. Analytical bases for efficient search of initial domains of values of Lagrange multipliers at each iteration are established. This facilitates the construction of a series of sub-optimal solutions which converge to an optimal solution. A corresponding algorithm yields the optimal solution last or, in case of unattainability thereof (due available resources of the spacecraft) a solution close to optimal. An electronic processor for implementing the method and a spacecraft with said processor are also disclosed.

EFFECT: faster operation, improved convergence, low qualification requirements and wider field of use of the disclosed algorithm and accompanying equipment.

16 cl, 7 dwg

FIELD: physics, atomic power.

SUBSTANCE: invention relates to atomic power engineering and space-rocket engineering. The spacecraft nuclear propulsion system comprises a heater - gas-cooled nuclear reactor, a cooler, a recuperative heat exchanger, a pipe system with a gaseous working medium, coaxial turbine-compressor-electric power generator, electric jet engines, an automatic control system with measurement and control means. The number of loops of the turbine-compressor-electric power generator with equal electric power is a multiple of two with opposite direction of rotation of rotors of the turbine-compressor-electric power generator in each pair, wherein the pipe system connects the output of the heater - gas-cooled nuclear reactor with the input of each turbine, and the output of the turbine with the input of the channel of the heated gaseous working medium of its recuperative heat exchanger, the output of the channel of the heated gaseous working medium of the recuperative heat exchanger with the input of its cooler, the output of the cooler with the input of its compressor, the output of the compressor with the input of the channel of the cold gaseous working medium of its recuperative heat exchanger, the output of the channel of the cold gaseous working medium of each recuperative heat exchanger with the input of the heater - gas-cooled nuclear reactor.

EFFECT: high efficiency and reliability of the spacecraft nuclear propulsion system.

19 cl, 2 dwg

FIELD: transport.

SUBSTANCE: invention relates to space engineering and can be used in carrier rockets.. Proposed rocket comprises head unit with payload, parallel separable rocket stages with multichamber engines with fuel tanks shaped to torus, tapered tail, short central body at first stage, single trough-like nozzle at second stage, bottom part composed of outer and inner cones composed by outer and inner surfaces of short central body shell and inner surface of single trough-like nozzle shell. Fuel tanks and single trough-like nozzle are arranged inside short central body between first-stage tanks.

EFFECT: decreased bottom resistance, higher specific pulse.

5 cl, 9 dwg

FIELD: transport.

SUBSTANCE: invention relates to space engineering, particularly, to astronaut operation in weightlessness. Proposed holder comprises retainer composed by wire (made of afterflow material) in non-metallic sheath, ring at retainer end in diameter comparable with sized of fingers of inflated space-suit glove, lever with opening in diameter comparable with retainer diameter.

EFFECT: higher safety of articles retention in open space.

3 dwg

FIELD: transport.

SUBSTANCE: invention relates to space engineering, particularly, to astronaut operation in weightlessness. Proposed holder comprises retainer composed by wire (made of afterflow material) in non-metallic sheath, rings at retainer end in diameter comparable with sized of fingers of inflated space-suit glove.

EFFECT: higher safety of articles retention in open space.

3 dwg

FIELD: rocketry and space engineering; cryogenic stages of space rockets.

SUBSTANCE: according for first version, oxidizer supply unit is shifted in transversal direction and is secured in lower point of convex part of lower head plate of oxidizer tank, thus forming additional space in inter-tank compartment in axial direction; this space is used for displacement of cruise engine together with fuel tank towards oxidizer tank. According to second version, oxidizer supply unit is secured on concave part of lower head plate of oxidizer tank. Full suction of oxidizer from tank is performed by means of passages of intake unit introduced into concave part of lower head plate of oxidizer tank and used for coupling the lower zone of oxidizer tank with oxidizer supply unit inlet.

EFFECT: improved mass characteristics due to reduction of overall dimensions in length.

2 dwg

FIELD: rocketry and space engineering; designing artificial satellites.

SUBSTANCE: proposed spacecraft has modules where service equipment is arranged and modules where target equipment and command and measuring devices are located. Optical devices of target equipment of infra-red range with cooled elements are mounted in central module. Radio equipment of on-board repeater is arranged in side modules whose position is changeable relative to position of central module. Optical and command and measuring devices are mounted on one frame at reduced coefficient of linear thermal expansion; they are combined with central module through three articulated supports. Cooled elements of optical devices are connected with radiators located beyond zone of thermal effect; service equipment module is provided with solar batteries having low dynamic effect on accuracy of spacecraft stabilization. Besides that, this module is provided with plasma engine whose working medium excludes contamination of said optical devices.

EFFECT: enhanced accuracy of spacecraft stabilization; electromagnetic compatibility of systems.

3 dwg

FIELD: rocketry and space engineering; adapters for group launch of spacecraft.

SUBSTANCE: proposed adapter has body consisting of two parts: one part is made in form of load-bearing body with platform for placing the spacecraft on one end and with attachment frame on other end; other part is made in form of load-bearing ring secured on payload frame and provided with attachment frame. Attachment frames of load-bearing body and load-bearing ring are interconnected by means of bolted joints fitted with two rubber washer shock absorbers each; one of them is mounted between surfaces of attachment frames to be coupled and other is mounted between opposite surface of attachment frame of load-bearing body and metal washer laid under bolt head. Diameter of metal washer exceeds diameter of rubber washer shock absorber; spacecraft attachment units are secured on platform of load-bearing body by means of bolted joints with rubber washer shock absorbers mounted between platform surfaces to be coupled and spacecraft attachment units.

EFFECT: reduction of dynamic vibration and impact loads due to extended range of varying dampening properties of adapter.

6 dwg, 1 tbl, 1 ex

FIELD: future space engineering; interstellar flights.

SUBSTANCE: proposed method is based on use of reactive thrust of spacecraft rocket engines in their maneuvering in gravity field of black hole. Kerr (rotating) black hole, i.e. its ergosphere may be selected for the purpose. Several separate spacecraft are directed in succession to gravity field of black hole ensuring stable exchange of information among them (for example, by radio or light channel). Provision is made for acceleration of spacecraft to relativistic speeds and obtaining information on effect of such speeds and accelerations on physical processes, equipment and living beings (at safe flying out of sphere of influence of black hole), as well as verification of theories of black holes.

EFFECT: enhanced efficiency.

FIELD: rocketry and space engineering; upper stages of launch vehicles injecting payloads from reference orbit into working orbits.

SUBSTANCE: proposed cryogenic stage includes cruise engine, oxidizer tank, toroidal fuel tank, inter-tank compartment, truss for connection with payload and truss for connection with launch vehicle. Toroidal fuel tank is made in form of lens in cross section with bottoms changing to frames. Tank is coupled with said trusses and inter-tank compartment through outer frame forming load-bearing system for taking-up external inertial loads.

EFFECT: reduction of total longitudinal clearance and mass of cryogenic stage; increased zone of payload under launch vehicle fairing.

1 dwg

FIELD: rocketry and space engineering; scientific and commercial fields.

SUBSTANCE: proposed method includes placing payloads on injection facility, launching the launch vehicle, separation of injection facility from launch vehicle and injection of injection facility into geocentric orbit where said payloads are separated from injection facility. Main payload is placed on injection facility directly of body of accompanying payload; this body combines its functions with functions of main load-bearing member of adapter system for placing the main payload. After separation of injection facility from launch vehicle, additional acceleration of injection facility is performed and injection facility is injected into reference orbit and then it is shifted to geocentric orbit where main and accompanying payloads are separated. Accompanying payload is separated from injection facility after main payload is at safe distance without waiting for complete turn of main payload. Spacecraft in facility injecting the artificial satellites into geocentric orbit are placed in succession on injection facility beginning with lower one. Main payload in form of one or several spacecraft is placed on body of lower spacecraft through separation device. Body of lower spacecraft combines its functions with functions of adapter load-bearing member for placing the main payload.

EFFECT: increased mass ratio of launch vehicle and injection facility; extended functional capabilities.

3 cl, 2 dwg

FIELD: space engineering; spacecraft for descent in atmosphere of planet.

SUBSTANCE: proposed spacecraft has case with foldable wings and/or stabilizers provided with deployment mechanisms. In folded state at deceleration of spacecraft in atmosphere, said wings and/or stabilizers are covered with separable frontal heat shield which is oval in shape in projection on plane perpendicular to longitudinal axis of spacecraft. Side surfaces of tail section of spacecraft case with wings and/or stabilizers (and some other members) may be covered with separable aerodynamic flaps which form conical surface. After deceleration at initial stage of descent, shield is separated and wings (stabilizers) deploy to working position. Proposed spacecraft has high aerodynamic properties and is provided with reliable protection against aerodynamic and thermal loads at deceleration at high supersonic flight speeds.

EFFECT: low cost of servicing.

4 cl, 13 dwg

Settlement in space // 2264330

FIELD: construction of large-sized structures in space; space engineering.

SUBSTANCE: proposed settlement includes production, living and auxiliary rooms built from lightened modules which are combined in single complex of cylindrical shape with tunnel located along its main longitudinal axis. Said tunnel is embraced by three bodies: main body, body of communication chambers and body of transfer chamber. Pressurized passages are provided between these chambers. Gravitational drive mounted on tunnel is used for rotating the complex in order to form artificial gravity in all rooms. Facing secured on outer surface of guards is used for protection against adverse effect of space. Guards of main body are made from torous members assembled from enlarged space building modules. Main body may be provided with hollow longitudinal and radial stiffening members fastened together and secured to said torous members and to tunnel.

EFFECT: reduced labor consumption and time required for assembly of space structure.

2 cl, 8 dwg

FIELD: space engineering.

SUBSTANCE: proposed method includes joint assembly of payload and launch vehicle for forming space launch vehicle which is equipped with apogee stage with solid-propellant engine plant. Carrier-aircraft is coupled with space launch vehicle and launch vehicle is raised by this aircraft to preset altitude, then launch vehicle is separated and solid-propellant engine plants of three boost stages are started in succession; launch vehicle is injected into preset near-earth orbit and payload is separated from launch vehicle at preset point of trajectory in preset direction. In the course of flight of launch vehicle upon discontinuation of operation of engine plants of boost stages and completion of first boost leg, ballistic pause is performed at motion of space launch vehicle over ballistic trajectory at climbing the required altitude of orbit. Upon completion of ballistic pause at second boost leg engine of apogee stage is started and space launch vehicle is injected into preset near-earth orbit at respective velocity increment and compensation of error during operation of boost stages. Aircraft rocket space complex includes 1st class aerodrome, carrier-aircraft and space launch vehicle. Masses of boost and apogee stages are selected at definite ratio. Provision is made for transportation container for delivery of space launch vehicle to aerodrome. Telemetric information measuring and tracking points are located on aeroplanes; they are made in form of mobile radio unit for reception of external information.

EFFECT: reduction of distance from launch site of space launch vehicle to point of separation of payload.

18 cl, 11 dwg

FIELD: space engineering.

SUBSTANCE: proposed method includes transportation of space launch vehicle to launching position, preparation for launch, raising the space launch vehicle to preset altitude by carrier-aircraft, separation from carrier-aircraft, stabilization of space launch vehicle and starting the engine plant of first boost stage. Space launch vehicle is transported to launching position in transportation-and-operation container. Then, container is transferred by means of crane to erection trolley, detachable compartments are dismantled and space launch vehicle is transported to carrier-aircraft. Space launch vehicle is secured to carrier-aircraft by means of locks of carrier-aircraft. Space launch vehicle is equipped with boost stages with solid-propellant engine plants, stabilization unit and units for attachment of launch vehicle to carrier-aircraft. It is also equipped with separable tail fairing and lattice stabilizers made in form of cylindrical panels which are secured on it. After bringing the space launch vehicle to preset altitude, locks of carrier-aircraft are opened by command and lattice stabilizers of tail fairing are opened simultaneously. After preset pause, before separation of space launch vehicle, tail fairing with lattice stabilizers is separated from space launch vehicle. Proposed method makes it possible to reduce launch mass and ensure stabilization on flight leg of safe distance from carrier-aircraft till moment of start of 1st stage engine plant.

EFFECT: extended field of application.

7 cl, 5 dwg

Up!