Method for aquatic gas-hydrate deposit development

FIELD: oil and gas industry.

SUBSTANCE: in the process of aquatic gas-hydrate deposit development, the gas accumulates and undergoes primary treatment on a platform (or on a ship) equipped with a tubing pipe, a pipeline with special tanks for distribution and supply of water, a water preparation unit, measuring devices for monitoring the supply of water and the particles destroying the deposit, a collection bell, a pipeline for selecting the formed gas mixture, instruments for monitoring the pumping-out system of the formed product (gas mixture), then it is transported to the methane offshore catch basin. Spherical nanoparticles are used as a working tool that destroys gas hydrates.

EFFECT: increased efficiency of aqual gas hydrates extraction.

1 dwg

 



 

Same patents:

FIELD: oil and gas industry.

SUBSTANCE: according to the method upper layer of gas hydrate mass is melted gradually by heating gas hydrate mass in bottom sediments of a water body up to temperature of 50-60°C. Heating is made by a heating element made as blade edge located along diameter of a cargo container lowered from a flotation device. The flotation device is made as a mobile underwater vehicle with retractable tract in the form of a container equipped with blade edge in the bottom part connected to heating elements inside container. Stability of the mobile underwater vehicle is endured in regard to the bottom of the water body. Container is rotated and electric current is supplied to heating elements. Gas hydrate stratum is heated up to 50-60°C. The container is lowered with rotation to the gas hydrate stratum with provision of single-point recovery of hydrates from the above stratum in solid state.

EFFECT: reduced material and operational expenditures and ecological consequences at gas hydrate extraction territory.

2 cl, 1 dwg

FIELD: oil and gas industry.

SUBSTANCE: method includes production of gas hydrates, their transportation to a consumer and decomposition of gas hydrates with gas recovery. Gas hydrate recovery process is implemented at thermodynamic parameters corresponding to formation of gas hydrates. Transportation of gas hydrates is performed in sealed and heat insulated cargo spaces of a vehicle at thermodynamic parameters excluding decomposition of gas hydrates. Decomposition of gas hydrates with gas recovery upon completed transportation is made by reduction of pressure in cargo space of a vehicle up to atmospheric pressure. Process of gas hydrate recovery and their storage during transportation is carried out at temperature of -0.2°C and pressure of 1 MPa. At that gas hydrates are withdrawn in hydrate state as briquettes by n-containers run down in sequence to submarine reservoir of gas hydrates from a submarine vehicle. The submarine reservoir of gas hydrates is heated up by heating elements located at edges of n-containers. Each n-container is buried in sequence to submarine reservoir of gas hydrates to the depth twice exceeding the container height. Upon loading of each n-container by free falling of gas hydrates they are loaded to cargo space of a vehicle. The vehicle is made as a submarine vessel. While heating submarine reservoir of gas hydrates only reservoir section under the container is heated. Containers are filled with gas hydrates represented by briquettes of natural metastable mineral in hydrate solid state.

EFFECT: improving efficiency in recovery and transportation of gas hydrates due to reduced consumption of energy and reduced capital and current costs.

2 cl, 1 dwg

FIELD: mining.

SUBSTANCE: method comprises mechanical destruction of seafloor layer by an stripping knife moving along the seafloor, and transportation of destruction products to the surface. The products of destruction are placed in elastic, gas-tight shells, which are collected along the surface and transported them to the place of use in the transportation vessel refrigerators. The combine is a moving platform with a knife for seafloor cleaning with the mounted video camera and the stripping knife under the hole in the platform designed as a horizontally rotating cylinder with the scrapers mounted on it. The platform has two mounted cylinders, the first is a container with shells located horizontally one above another one, and the second one, mounted above the hole, is a loading container in the top side of which the segments with drive mechanisms shifting them from the cylinder axis are located.

EFFECT: improvement of efficiency of ocean production of gas hydrates.

4 cl, 2 dwg

FIELD: mining.

SUBSTANCE: device comprises a clamshell ladle fitted with levers with bosses and flexible links, a sensor, a flexible cavity, a float. The device is also fitted with the vessel designed as a bent cylinder with the tapered extended cylindrical part which is inclined to the opposite side from the self-contained unit and through the frame is interconnected with it. The vessel is fixed on a cable with a possibility of vertical movement. The extended cylindrical part of the vessel is fitted with a sensor interacting with a sensor located in the container under a flexible cavity which is filled with liquid with a specific gravity, less than that of environment. The unloading hole of the extended cylindrical part of the vessel is fitted with the throwing-back tray. The distance from the clamshell ladle centreline to the tray in the thrown-back situation and distance from the lower edge of the clamshell ladle to the tray in the thrown-back situation are determined by the mathematical relations given in the description.

EFFECT: improvement of efficiency of underwater development of minerals.

5 cl, 3 dwg

FIELD: mining.

SUBSTANCE: device comprises a delivery pipe for supply of minerals designed from top to bottom with a bell and a pipeline for coolant supply. The delivery pipe is designed as variable section pipe with formation of alternating cylindrical compartments with inlets and outlets, and the top parts of some compartments are arranged with inclination as cross-lying with reference to other compartments, and the lower parts of compartments are designed conical, interconnected with coolant supply pipelines. Outlets of compartments are located from inlet holes at the distance necessary for passing and maintaining of soil and ice bodies in a suspension provided that: L≥3·dmax, where L - is the distance between inlets and outlets of compartments, dmax - maximum diameter of soil and ice bodies.

EFFECT: improvement of efficiency of production of minerals from continental shelf.

1 dwg

FIELD: mining.

SUBSTANCE: device includes a conveying capacity in the form of a grab bucket provided with levers with thrusts and flexible links, a start sensor located in a container and a flexible cavity. The latter is filled with liquid with a capsule located in it and containing reagents. A capsule throw valve is located at the top of the flexible cavity. Radio beacons are fixed inside the container, on its side walls, and coupling rings are located on the outside. Sodium chloride (3%) and sodium hypochloride (0.3%) are used as reagents.

EFFECT: improving efficiency of operations.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: device includes a grab bucket with armoured jaws and flexible links by means of which the bucket is connected to a gas generator and to a flexible cavity start-up sensor, which are located in a container, and a float. The grab bucket is made from elastic material, and a flexible cavity is equipped with a cable located inside the cavity in the centre, the lower end of which is attached to a partition wall additionally installed between a gas generator and the flexible cavity, and the upper end of the cable is attached to the float. As the elastic material of the grab bucket there used is for example thermopolyutherane. The upper edge of the grab bucket is perforated. Armoured jaws of the grab bucket are provided with holes uniformly distributed throughout the surface area. A full air discharge valve is located at the top of the flexible cavity. The float is made in the form of a radio beacon.

EFFECT: improving efficiency of operations.

6 cl, 3 dwg

FIELD: oil and gas industry.

SUBSTANCE: system contains at least one modular shaft with the central unit placed under water and an uprise buried to the ocean bottom and at least one air-lock chamber to transport duty shifts of workers, materials and equipment. Besides the system comprises at least one drilling area with a horizontal tunnel branched from the uprise in the central unit, and an inclined area for delivery of drill pipes and a vertical area in which bottom part there is a wellhead of at least one well. A power cable and control systems as well as pipeline in the protective shell for oil and gas transportation are connected to the modular shaft.

EFFECT: increasing development efficiency of subsea oil and gas deposits.

9 cl, 56 dwg

FIELD: mining.

SUBSTANCE: proposed device comprises mineral feed pipe aligned inside hollow pipe with funnel at its bottom, and coolant feed pipeline. Additionally, this device comprises coolant feed pipelines distributed uniformly over hollow pipe perimeter, in funnel walls and in extra struts of said funnel. Hollow pipe is located at the level of funnel strut. Funnel strut inner walls are perforated. At the level of funnel, hollow pipe has vertical cut-outs furnished with plugs from top and bottom. Funnel strut top parts are also equipped with plugs.

EFFECT: continuous mining, lower power consumption and extraction costs, minimised negative effects on contamination of environments.

2 cl, 2 dwg

FIELD: oil and gas industry.

SUBSTANCE: method for development of methane hydrates is based on their breaking by water jets at a temperature of more than 285K with the rate more than 1 m/s in a pulse mode with a frequency in the range from 1 up to 200 Hz, gasification and lifting from the seabed. A device for development of methane hydrates contains a floating device, handling equipment, a power generating unit, pipelines, a control unit and an underwater methane hydrate development unit in which body there is an installed infrared heater, a water-jet monitor with pressurised water feed equipment and a gas bleeder.

EFFECT: improvement of energy efficiency for underwater development of methane hydrates and their lifting to the floating device.

2 cl, 1 dwg

FIELD: measurement equipment.

SUBSTANCE: method for determining a range of sizes of suspended nanoparticles consists in passage of gas (mixture of gases) containing analysed particles, through diffusion batteries of a meshed type and their introduction to supersaturated vapours of a low-volatile enlarging substance. Then, lighting of a flux of particles with a light beam and recording of parameters of light signals shaped by enlarged particles at their flying through the pointed-out area of the flux is performed. In order to improve accuracy of determination of the range of sizes, the main flux is separated into six parallel fluxes. With that, five of them are passed through five diffusion batteries with a different slip, and one of them is passed directly. Then, these fluxes pass through six devices of condensation growth and then to a field of vision of a charge-coupled device matrix and the obtained six areas of images of enlarged fluxes of particles are transmitted to a computer for an analysis of their range of sizes. Unlike known ones, the method allows performing simultaneous processing by means of a computer of six images of enlarged particles, which characterise different dimensional ranges of nanoparticles.

EFFECT: reducing the time required for measurements and improving their accuracy.

1 dwg

FIELD: physics.

SUBSTANCE: semiconductor structure for photo converting and light emitting devices consists of semiconductor substrate (1) with face surface misaligned from plane (100) through (0.5-10) degrees and at least one p-n junction (2) including at least one active semiconductor ply (3) arranged between two barrier plies (4) with inhibited zone width Eg0. Active semiconductor ply (3) consists of 1st and 2nd type spatial areas (5, 6) abutting of barrier plies (3) and alternating in the plane of active semiconductor ply (3). 1st type spatial areas (5) feature inhibited zone width Eg1 < Eg0, while 2nd type areas have inhibited zone width Eg2 < Eg1.

EFFECT: higher efficiency owing to increased photo flux and higher level of photo generation and charge carrier separation, higher probability of photon generation and lower probability of radiation-free recombination.

11 cl, 11 dwg, 5 ex

FIELD: chemistry.

SUBSTANCE: first step includes obtaining low-hydroxylated insoluble fullerenols by reacting concentrated fullerene solution in o-xylene with aqueous ammonia solution in the presence of a tetrabutylammonium hydroxide phase-transfer catalyst at 35-40°C. At the second step, the obtained low-hydroxylated insoluble fullerenols are hydroxylated to transform them into a water-soluble form by mixing with 6-15% aqueous hydrogen peroxide solution and heating for 4-5 hours at 65°C. Water-soluble fullerenols are then precipitated from an alcohol-containing solution.

EFFECT: simplifying the method while preserving quality characteristics and full extraction of the end product.

2 cl, 1 dwg, 4 tbl, 3 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to pharmaceutical industry, namely to selenium nanocomposites of natural hepatotrophic galactose-containing polysaccharide matrixes, representing water-soluble orange-red powders containing zerovalent selenium (Se0) nanoparticles sized 1-100 nm in the quantitative content of 0.5 - 60 wt %, possessing antioxidant activity for treating and preventing redox-related pathologies, particularly for treating toxic liver damage, to a method for producing and to an antioxidant agent containing the above nanocomposites.

EFFECT: invention provides the targeted agent delivery to liver cells, as well as higher agent accessibility and lower toxic action of selenium.

7 cl, 11 ex, 4 tbl

FIELD: physics.

SUBSTANCE: method includes forming a near-field mask on the surface of a dielectric substrate and irradiating the obtained structure with a femtosecond laser pulse. The laser radiation is first passed through a nonlinear optical crystal with a coefficient of transformation into a second harmonic equal to 5-7%. The dielectric substrate coated with the near-field mask is irradiated with the obtained bichromatic femtosecond pulse with energy density in the range of 25-40 mJ/cm2, which is less than the laser radiation energy density normally used in similar nanopatterning.

EFFECT: high resolution and low laser radiation energy consumption.

6 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to a method for hydroconversion of heavy oil fractions - feed stock, the method including a zero step and subsequent N steps. The zero step includes feeding, into a reactor, material, a catalyst precursor - aqueous solution of a Mo (VI) salt or salts of Mo and Ni, and hydrogen at pressure of 4-9 MPa under normal conditions; reacting the material and hydrogen at 420-450°C in the presence of a precursor of a suspended nanosize molybdenum or molybdenum-nickel catalyst formed in the reactor; atmospheric or atmospheric-vacuum distillation of the hydrogenation product; removing the low-boiling fraction with a boiling point not higher than 500°C as a product and returning the high-boiling fraction or part thereof into the reactor. The next steps include feeding, into the reactor, material, a catalyst precursor, the returned part of the high-boiling fraction and hydrogen; reaction thereof; said atmospheric distillation of the hydrogenation product; removing the low-boiling fraction as a product; returning part of the high-boiling fraction into the reactor; burning at 1000-1300°C or gasification of the remaining part of the high-boiling fraction, after which trapped ash-slag residues are subjected to further oxidising burning at 800-900°C and the obtained ash product, which is carbon-free, is used to regenerate the catalyst precursor and produce an industrial concentrate of vanadium and nickel. The number of steps N is determined using formulae: bd(nn+nm+1)=a+i=1nmbi+benm, N=nn+nm+1, where nn is the number of steps with recirculation, after which equilibrium output of the low-boiling fractions is achieved; nm is the number of steps with recirculation after achieving equilibrium output of the low-boiling fractions, which enables to achieve a given output of low-boiling fractions from the feed stock; bd is the given output of low-boiling fractions, wt %; a is the output of low-boiling fractions at the zero step, wt %; bi is the output of low-boiling fractions at the i-th step before achieving equilibrium, wt %; be is the output of low-boiling fractions after achieving equilibrium, wt %, be>bd.

EFFECT: high output of low-boiling fractions, low molybdenum consumption, high degree of extraction of molybdenum, vanadium and nickel from the solution, enabling calculation of the required reactor volume, obtaining an industrial concentrate of vanadium and nickel, low hydrogen consumption.

3 cl, 1 dwg, 2 tbl, 2 ex

FIELD: chemistry.

SUBSTANCE: invention can be used in obtaining coatings, reducing coefficient of secondary electronic emission, growing diamond films and glasses, elements, absorbing solar radiation. Colloidal solution of nano-sized carbon is obtained by supply of organic liquid - ethanol, into chamber with electrodes, injection of inert gas into inter-electrode space, formation of high-temperature plasma channel in gas bubbles, containing vapours of organic liquid. High-temperature plasma channel has the following parameters: temperature of heavy particles 4000-5000K, temperature of electrons 1.0-1.5 eV, concentration of charged particles (2-3)·1017 cm3, diameter of plasma channel hundreds of microns. After that, fast cooling within several microseconds is performed.

EFFECT: simplicity, possibility to obtain nanoparticles of different types.

3 cl, 1 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to field of nanotechnologies and can be used for obtaining composite materials with high electric and heat conductivity, additives to concretes and ceramics, sorbents, catalysts. Carbon-containing material is evaporated in volume thermal plasma and condensed on target surface 9 and internal surface of collector 7. Plasma generator 3, which includes coaxially located electrodes: rod cathode 4 and nozzle-shaped output anode 5, are used. Gaseous carbon-containing material 6 is supplied with plasma-forming gas through vortex chamber with channels 2 and selected from the group, consisting of methane, propane, and butane. Bottom of collector is made with hole 8 for gas flow to pass.

EFFECT: invention makes it possible to reduce energy consumption of the process, extend types of applied hydrocarbon raw material, simplify device construction and provide continuity of the process and its high productivity.

2 dwg, 3 ex

FIELD: chemistry.

SUBSTANCE: method of obtaining a composite material includes the influence on a mixture of a carbon-containing material, filler and sulphur-containing compound by a pressure of 0.1-20 GPa and a temperature of 600-2000°C. As the sulphur-containing compound applied is carbon bisulphide, a compound from the mercaptan group or a product of its interaction with elementary sulphur. As the carbon-containing material applied is molecular fullerene C60 or fullerene-containing soot. As the filler applied are carbon fibres, or diamond, or nitrides, or carbides, or borides, or oxides in the quantity from 1 to 99 wt % of the weight of the carbon-containing material.

EFFECT: obtained composite material can be applied for manufacturing products with the characteristic size of 1-100 cm and is characterised by high strength, low density, solidity not less than 10 GPa and high heat resistance in the air.

11 cl, 3 dwg, 11 ex

FIELD: chemistry.

SUBSTANCE: invention relates to inorganic chemistry, namely to obtaining silicon-carbide materials and products, and can be applied as thermal-protective, chemically and erosion resistant materials, used in creation of aviation and rocket technology, carriers with developed surface of heterogeneous catalysis catalysts, materials of chemical sensorics, filters for filtering flows of incandescent gases and melts, as well as in nuclear power industry technologies. To obtain nanostructures SiC ceramics solution of phenolformaldehyde resin with weight content of carbon from 5 to 40% with tetraethoxysilane with concentration from 1·10-3 to 2 mol/l and acidic catalyst of tetraethoxysilane hydrolysis id prepared in organic solvent; hydrolysis of tetraethoxysilane is carried out at temperature 0÷95°C with hydrolysing solutions, containing water and/or organic solvent, with formation of gel. Obtained gel is dried at temperature 0÷250°C and pressure 1·10-4÷1 atm until mass change stops, after which carbonisation is realised at temperature from 400 to 1000°C for 0.5÷12 hours in inert atmosphere or under reduced pressure with formation of highly-disperse initial mixture SiO2-C, from which ceramics is moulded by spark plasma sintering at temperature from 1300 to 2200°C and pressure 3.5÷6 kN for from 3 to 120 min under conditions of dynamic vacuum or in inert medium. Excessive carbon is burned in air at temperature 350÷800°C.

EFFECT: obtaining nanostructured silicon-carbide porous ceramics without accessory phases.

4 cl, 4 dwg, 3 ex

FIELD: medicine.

SUBSTANCE: invention relates to medicine and deals with nanoliposome which includes liposomal membrane, contains ethgerificated lecitin and one or more physiologically active ingredients, incorporated in the internal space of liposomal membrane, method of obtaining such, as well as composition for prevention or treatment of skin diseases, containing nanoliposome.

EFFECT: invention ensures long-term stability and homogenecity of nanoliposomes.

15 cl, 22 ex, 4 dwg, 2 tbl

Up!