Executive body of tunnelling shield complex for construction of multilane road and railway tunnels and pillarless metro stations

FIELD: construction.

SUBSTANCE: executive body of the oval-shaped shield complex comprises lateral working bodies that represent ovals formed by rotating about the vertical axis of the lateral tunnel arches and their coupling with the arch and the reverse arch of the tunnel. The front working body consists of three working bodies, each of which is formed by rotating about the horizontal axes of the arch and the reverse arch circles, wherein the intermediate working body is made concave. The gaps between them and the shield shell correspond to the working tool overhang, and the working tool is mounted with the displacement to the development magnitude.

EFFECT: provision of tunneling with the optimal oval cross-section shape, while reducing the costs for the rock development; provision of tunneling in various geological conditions at the large influx of water, creating the conditions for the maximum mechanization and automation of all production processes.

2 cl, 6 dwg

 



 

Same patents:

FIELD: construction.

SUBSTANCE: geohod (blade shield) comprises head and end cylindrical sections. In the front part of the head section on a frame structure there is an actuating element of a geohod, comprising two breaking cylindrical elements of drum type, connected with a motor and installed at the angle α in diametral plane with eccentricity e relative to the longitudinal axis of the geohod. On the external side of the head cylindrical section there is a propulsion device fixed, made in the form of short sectors of a double-threaded spiral surface. In front of them there are breaking elements of the propulsion device of cylindrical shape, on the side surface of which there are radial cutters arranged. The driving motor of the breaking elements of the propulsion device is installed on the inner side of the head section. On the end cylindrical section there are longitudinal elements of counterrotation fixed with breaking organs of elements of counterrotation of cylindrical shape installed in front of them, the axis of rotation of which is perpendicular to the longitudinal axis of the geohod.

EFFECT: increased reliability of operation and reduced metal intensity of a unit, increased speed of tunnelling and manufacturability of unit manufacturing, expanded area of application of a unit.

7 dwg

FIELD: construction.

SUBSTANCE: when installing subway lines, before tunnelling station and running tunnels in the beginning and end of specified zones, they form installation and deinstallation chambers for a double-rotor tunnelling mechanised complex (DRTMC), which is used to tunnel the zone of running tunnels and 3-4 station complexes. At the same time the shield is entered to the level of the zone of the station complex in the installation chamber, and upon completion of tunnelling it is taken out through the deinstallation chamber and is further transferred to the next zone of formation of the station complex.

EFFECT: provision of safety, reduced time of construction of a subway line under complex hydrogeological conditions with close city development, reduced number of building workers and personnel.

2 cl, 3 dwg

FIELD: mining.

SUBSTANCE: method to erect an underground mine with shield tunnelling using elements of an assembled circular lining of a support consists in mining soil with a mechanised shield. Plugging of the space behind the lining is carried out via holes in elements of a tubing support with a grouting mortar. At the initial stage of tunnelling a bottomhole is mined, and a part of the space behind the lining is filled at the length of 0.25-0.75 of the length of the element of the assembled circular lining of the support behind the first ring after the shield in the lining of the tubing support with a long-setting grouting mortar. The next stage of mining at the length of 0.5-1 of the length of the element of the assembled circular lining of the support is carried out with supply of the grouting mortar into the space behind the lining with a setting accelerator. At the stage of process shutdown of a shield for assembly of the next ring of the tubing support, the pressure of the grouting mortar in the space behind the lining behind the first ring after the shield for lining of the tubing support is maintained by means of the long-setting grouting mortar into the area of the section of the space behind the lining, initially filled with the long-setting grouting mortar. Further stages of soil mining and plugging of the space behind the lining are repeated.

EFFECT: higher efficiency and improved manufacturability of performed works, reduced labour intensiveness of overcoming emergency situations that occur in process of tunnelling.

4 cl

Duplex geovehicle // 2469192

FIELD: mining.

SUBSTANCE: duplex geovehicle consists of three sections. Two front sections are mounted on load-carrying beams with drives by means of ball races with toothed rims of bevel gear. Section rotation drives are located on diaphragms that are mounted on front ends of load-carrying beams with drives. Each load-carrying beam with a drive is mounted in the guides of rear section with possibility of its retraction. A screw with a separate drive is mounted inside the load-carrying beam. On external surfaces of front rotating sections there located are screw blades with opposite winding direction. Before each blade there mounted are small actuating elements with individual drives and sleeves with screws. In the centre of diaphragms there mounted are hollow beams inside which screws with drives are mounted Flared ends and loading rotors with drives are mounted on the front side of face ends of hollow beams. Drives and actuating elements of rear section are located on its front wall. Outside the front wall: at the top and at the bottom - horizontally, and in the centre - vertically. Drag conveyor, tray and screw with a drive are located behind the front wall inside rear section.

EFFECT: increasing the strength of out-contour layer of rock mass.

5 dwg

FIELD: mining.

SUBSTANCE: tunnelling combine (90) for horizontal mines comprises a rotary cutting head (93), where there are many cutting assemblies (10) installed as capable of rotation. Multiple units of instruments (50) are connected with a rotary cutting head, at the same time each unit of instruments comprises a distal end in contact with the appropriate cutting assembly. Units of instruments comprise multiple sensors, including an accelerometer (32), a magnetometer (33) and a temperature sensor (34) to monitor the appropriate cutting assembly. Sensors are installed at the remote end of units of instruments pressed for contact with a cutting assembly. Units of instruments comprise a wireless transceiver and are connected to each other into a circuit of data transfer or a peer-to-peer network. A source (176) of power supply, such as a battery pack, is provided for each unit of instruments. Sensor data may be used to control operation of a tunnelling combine for horizontal mines and/or for monitoring condition of cutting assemblies.

EFFECT: enhancing effectiveness and reliability of tunnelling operation.

27 cl, 7 dwg

FIELD: mining.

SUBSTANCE: tunnelling header unit comprises serially arranged head and tail sections. The head section comprises a helical blade on the external surface, an actuator and an auger mechanism for broken mass discharge, besides, a rotation mechanism is also located in the head section. The tail section comprises longitudinal support elements, aligned along the longitudinal axis of the unit, a drive of the rotation mechanism. The sections are connected to each other with the possibility of the head section rotation relatively to its longitudinal axis. The rotation mechanism is arranged in the form of a hollow shaft, where two wave generators are installed, being arranged with eccentricity relative to the axis of the driving shaft, a geared crown arranged on the inner surface of the head section, a separator connected to the end section and intermediate solids of revolution. Number of teeth in the geared crown is more than the number of intermediate solids of revolution by one. The sections have a rigid kinematic link in the axial direction, which consists of two touching circular ledges, one ledge is located on the separator, the second ledge is arranged on the inner surface of the head section. The driving shaft is installed in rolling bearings, with one bearing installed in the head section, and the other one - in the end section. The driving shaft at the side of the stripped area has a driving gear arranged with the possibility of rotation from motors via a motor gear, and the motors are fixed at the inner surface of the end section.

EFFECT: improved reliability of the unit operation, loading capacity of the unit drive and efficiency of tunnelling, expanded area of the unit application.

5 dwg

FIELD: mining.

SUBSTANCE: birotating tunnel shield unit consists of three sections. Two front sections, starting from bottomhole, are mounted on diaphragm by means of ball runnings with toothed collars of conical gear, engaged at diametral opposite sides with master conical gears of section rotation drives arranged on diaphragm, which is mounted at front end of beam with drive by means of Hooke joint and hydraulic cylinders with stems, fixed on beam and diaphragm by means of journals. Beam with drive is mounted in guides of back section, at the same time auger with a separate drive is mounted inside beam. On external surface of back section there are elements of conrotation arranged in the form of plates aligned along longitudinal axis of section, at the same time on external surfaces of front rotary sections there are helical blades arranged with opposite direction of winding. Besides, small actuating elements with individual drives and sleeves with augers are mounted upstream each blade and element of conrotation. Hollow beam is mounted in the centre of diaphragm, inside which there is an auger with drive fixed, at the same time outside - at bottomhole of beam there is a socket and loading rotor with drive mounted, connected to the main actuating element.

EFFECT: unloading of back section from torque and from longitudinal braking force.

6 dwg

FIELD: mining.

SUBSTANCE: invention is related to mining industry, in particular to shield driving of tunnels, and may be used in shield driving of through collector tunnels with concrete lining. Method for shield driving of tunnel consists in erection of shield chambers by method of "slurry-type wall" for assembly and turns of shield on track of arranged tunnel. Walls of shield chambers, at least those, where holes are provided for passage of shield, are made of concrete, having compression strength of not more than 11.5-14.5 MPa, are reinforced with glass-plastic reinforcement from rods with diametre from 4 to 10 mm with ultimate strength in case of cutting across fibres of at least 165 MPa and developed by working element of shield. Formation of concrete lining, in process of collector tunnel driving, at least in joint of shield chambers walls and on length of tunnel from two to ten of its diametres, is carried out by at least two concentric layers, between which additional internal hydraulic insulation layer is arranged, and application of hydraulic insulation coating onto inner surface of concrete lining is carried out after complete drying of surface layer of tunnel walls.

EFFECT: improved reliability of tunnel arrangement and its hydraulic insulation, higher speed of underground communications construction.

2 cl

FIELD: mining.

SUBSTANCE: invention is related to mining, in particular to mechanised performance of underground mine tunnels with round shape of cross section. Method for performance of underground mine tunnel of round cross section includes formation of oriented cavity in the Earth bowels, cutting of helical and longitudinal radial channels in edge zone of tunnel in surrounding rock mass, loading and transportation of broken muck, maintenance of stripped area by erection of support and organization of ventilation. Together with cavity formation they cut three longitudinal radial channels, evenly distributing them in plane of tunnel cross section. At the same time one of longitudinal radial channels is oriented along line of most probable largest action of external load from forces of rock pressure. Damaged rock is removed from longitudinal radial channels and loaded in transport vehicle. In longitudinal radial channels they install embedded elements, to which support elements are connected. Besides depth of longitudinal radial channel makes at least half of radius of cross section of produced tunnel.

EFFECT: higher reliability of mine tunnel maintenance in operational period.

3 dwg

FIELD: mining.

SUBSTANCE: method of boring hard rock by means of tunnel boring machine equipped with disks of hardened steel projecting from cutting head consists in supply of foamed water liquid to cutting head; this composition corresponds to surface active substance -SAS and lubricating material - polyethylene oxide with molecular wt from 4.500.000 to 8.000.000. The said ingredients are measured separately in a water form, are added into water and are transformed into a foam using anionic or nonionic SAS; the said composition is obtained by dilution of concentrate with water on site.

EFFECT: reduced wear of cutting components; increased boring efficiency.

4 cl

FIELD: mining industry.

SUBSTANCE: device has frontal, two side and two conical working tools with rock-destroying tools on outer surfaces, drives, rigidly connected to axes of each working tool, and displacement mechanism, connected to guides, placed at angle relatively to each other, which angle is determined from mathematical expression. Frontal and each of side working tools are made in form of two rotation bodies, having arced forming lines with given value of convexity. Axes of frontal working tool and axes of two conical working tools are rigidly connected to guides, axes of upper rotation body of frontal working tool being displaced relatively to axis of its lower rotation body towards pit-face, and axes of each pair of side working tools are jointly connected to each other and to guides. Frontal working tool may be made in form of several modules.

EFFECT: higher efficiency.

2 cl, 4 dwg

Tunneling method // 2259479

FIELD: underground structure building, particularly for forming underground tunnels and collectors.

SUBSTANCE: method involves excavating ground with cutting tool; regulating kentledge pressure in rotor chamber and backfilling annular tubing space. Kentledge pressure is automatically adjusting with that of enclosing ground exerting pressure on shield case by means of membranes. The membranes are installed in shield case and are permanently subjected to actual enclosing ground pressure. Backfilling operation is performed through end part of shield case immediately after shield case movement.

EFFECT: prevention of ground and object deformation in tunnel boring machine movement area, increased backfill layer elasticity and tunnel lining impermeability.

4 cl, 6 dwg

FIELD: tunnel construction, particularly devices to construct hydroelectric power plant floodgates and to build motor roads and rail roads in mountains.

SUBSTANCE: method involves creating conditions favorable for chemical reaction between chemical element oxides basically constituting rock and graphite for rock fusion. For this rock is heated up to high temperature at face by thermal electric arc energy transmission through metal front tunneling machine wall. Electric arc is generated between electrodes inside discharge chambers arranged on inner surface of front tunneling machine wall. Electric current is supplied to electrodes via graphite mass moving through electrically-insulated pipes. Graphite is forced via electrodes and introduced into face through nozzles connected to front tunneling machine wall.

EFFECT: possibility to regulate electric current power and graphite mass to select necessary excavation regimes.

FIELD: mining.

SUBSTANCE: method of boring hard rock by means of tunnel boring machine equipped with disks of hardened steel projecting from cutting head consists in supply of foamed water liquid to cutting head; this composition corresponds to surface active substance -SAS and lubricating material - polyethylene oxide with molecular wt from 4.500.000 to 8.000.000. The said ingredients are measured separately in a water form, are added into water and are transformed into a foam using anionic or nonionic SAS; the said composition is obtained by dilution of concentrate with water on site.

EFFECT: reduced wear of cutting components; increased boring efficiency.

4 cl

FIELD: mining.

SUBSTANCE: invention is related to mining, in particular to mechanised performance of underground mine tunnels with round shape of cross section. Method for performance of underground mine tunnel of round cross section includes formation of oriented cavity in the Earth bowels, cutting of helical and longitudinal radial channels in edge zone of tunnel in surrounding rock mass, loading and transportation of broken muck, maintenance of stripped area by erection of support and organization of ventilation. Together with cavity formation they cut three longitudinal radial channels, evenly distributing them in plane of tunnel cross section. At the same time one of longitudinal radial channels is oriented along line of most probable largest action of external load from forces of rock pressure. Damaged rock is removed from longitudinal radial channels and loaded in transport vehicle. In longitudinal radial channels they install embedded elements, to which support elements are connected. Besides depth of longitudinal radial channel makes at least half of radius of cross section of produced tunnel.

EFFECT: higher reliability of mine tunnel maintenance in operational period.

3 dwg

FIELD: mining.

SUBSTANCE: invention is related to mining industry, in particular to shield driving of tunnels, and may be used in shield driving of through collector tunnels with concrete lining. Method for shield driving of tunnel consists in erection of shield chambers by method of "slurry-type wall" for assembly and turns of shield on track of arranged tunnel. Walls of shield chambers, at least those, where holes are provided for passage of shield, are made of concrete, having compression strength of not more than 11.5-14.5 MPa, are reinforced with glass-plastic reinforcement from rods with diametre from 4 to 10 mm with ultimate strength in case of cutting across fibres of at least 165 MPa and developed by working element of shield. Formation of concrete lining, in process of collector tunnel driving, at least in joint of shield chambers walls and on length of tunnel from two to ten of its diametres, is carried out by at least two concentric layers, between which additional internal hydraulic insulation layer is arranged, and application of hydraulic insulation coating onto inner surface of concrete lining is carried out after complete drying of surface layer of tunnel walls.

EFFECT: improved reliability of tunnel arrangement and its hydraulic insulation, higher speed of underground communications construction.

2 cl

FIELD: mining.

SUBSTANCE: birotating tunnel shield unit consists of three sections. Two front sections, starting from bottomhole, are mounted on diaphragm by means of ball runnings with toothed collars of conical gear, engaged at diametral opposite sides with master conical gears of section rotation drives arranged on diaphragm, which is mounted at front end of beam with drive by means of Hooke joint and hydraulic cylinders with stems, fixed on beam and diaphragm by means of journals. Beam with drive is mounted in guides of back section, at the same time auger with a separate drive is mounted inside beam. On external surface of back section there are elements of conrotation arranged in the form of plates aligned along longitudinal axis of section, at the same time on external surfaces of front rotary sections there are helical blades arranged with opposite direction of winding. Besides, small actuating elements with individual drives and sleeves with augers are mounted upstream each blade and element of conrotation. Hollow beam is mounted in the centre of diaphragm, inside which there is an auger with drive fixed, at the same time outside - at bottomhole of beam there is a socket and loading rotor with drive mounted, connected to the main actuating element.

EFFECT: unloading of back section from torque and from longitudinal braking force.

6 dwg

FIELD: mining.

SUBSTANCE: tunnelling header unit comprises serially arranged head and tail sections. The head section comprises a helical blade on the external surface, an actuator and an auger mechanism for broken mass discharge, besides, a rotation mechanism is also located in the head section. The tail section comprises longitudinal support elements, aligned along the longitudinal axis of the unit, a drive of the rotation mechanism. The sections are connected to each other with the possibility of the head section rotation relatively to its longitudinal axis. The rotation mechanism is arranged in the form of a hollow shaft, where two wave generators are installed, being arranged with eccentricity relative to the axis of the driving shaft, a geared crown arranged on the inner surface of the head section, a separator connected to the end section and intermediate solids of revolution. Number of teeth in the geared crown is more than the number of intermediate solids of revolution by one. The sections have a rigid kinematic link in the axial direction, which consists of two touching circular ledges, one ledge is located on the separator, the second ledge is arranged on the inner surface of the head section. The driving shaft is installed in rolling bearings, with one bearing installed in the head section, and the other one - in the end section. The driving shaft at the side of the stripped area has a driving gear arranged with the possibility of rotation from motors via a motor gear, and the motors are fixed at the inner surface of the end section.

EFFECT: improved reliability of the unit operation, loading capacity of the unit drive and efficiency of tunnelling, expanded area of the unit application.

5 dwg

FIELD: mining.

SUBSTANCE: tunnelling combine (90) for horizontal mines comprises a rotary cutting head (93), where there are many cutting assemblies (10) installed as capable of rotation. Multiple units of instruments (50) are connected with a rotary cutting head, at the same time each unit of instruments comprises a distal end in contact with the appropriate cutting assembly. Units of instruments comprise multiple sensors, including an accelerometer (32), a magnetometer (33) and a temperature sensor (34) to monitor the appropriate cutting assembly. Sensors are installed at the remote end of units of instruments pressed for contact with a cutting assembly. Units of instruments comprise a wireless transceiver and are connected to each other into a circuit of data transfer or a peer-to-peer network. A source (176) of power supply, such as a battery pack, is provided for each unit of instruments. Sensor data may be used to control operation of a tunnelling combine for horizontal mines and/or for monitoring condition of cutting assemblies.

EFFECT: enhancing effectiveness and reliability of tunnelling operation.

27 cl, 7 dwg

Duplex geovehicle // 2469192

FIELD: mining.

SUBSTANCE: duplex geovehicle consists of three sections. Two front sections are mounted on load-carrying beams with drives by means of ball races with toothed rims of bevel gear. Section rotation drives are located on diaphragms that are mounted on front ends of load-carrying beams with drives. Each load-carrying beam with a drive is mounted in the guides of rear section with possibility of its retraction. A screw with a separate drive is mounted inside the load-carrying beam. On external surfaces of front rotating sections there located are screw blades with opposite winding direction. Before each blade there mounted are small actuating elements with individual drives and sleeves with screws. In the centre of diaphragms there mounted are hollow beams inside which screws with drives are mounted Flared ends and loading rotors with drives are mounted on the front side of face ends of hollow beams. Drives and actuating elements of rear section are located on its front wall. Outside the front wall: at the top and at the bottom - horizontally, and in the centre - vertically. Drag conveyor, tray and screw with a drive are located behind the front wall inside rear section.

EFFECT: increasing the strength of out-contour layer of rock mass.

5 dwg

Up!