Method of producing fibres from carbon nanotubes

FIELD: chemistry.

SUBSTANCE: invention relates to chemical engineering of fibre materials and a method of producing fibres from carbon nanotubes, which can be used for producing high-strength, high-modulus, electrically conducting composite materials of special purpose. Method of producing is carried out by exposing carbon nanotubes to a dispersion in a liquid medium, with subsequent removal of liquid medium. Medium used is a chlorine-containing organic solvent. Exposure involves mixing a dispersion of nanotubes with organosilicon liquid located between electrodes, wherein electric field intensity is 5–20 kV/cm, which is determined by formula E = U/d, where E is electric field intensity, kV/cm, U is voltage applied to electrodes, kV, d is distance between electrodes, cm.

EFFECT: invention provides technological effectiveness of producing fibres from carbon nanotubes.

1 cl, 5 ex

 



 

Same patents:

FIELD: chemistry.

SUBSTANCE: invention relates to chemical fibre technology and a method of spinning fibres from graphene ribbons. The method of spinning fibres from graphene ribbons begins with unfolding carbon nanotubes to form graphene ribbons, cleaning and drying the graphene ribbons and dissolving the graphene ribbons in a suitable solvent, preferably a superacid, to form a spinning solution. The spinning solution is used to spin such that spliced fibres are fed into a coagulation medium, also known as an anti-solvent, where spun or spliced fibres undergo coagulation. The coagulation medium flows in the same direction as the orientation of fibres formed from the graphene ribbons. The coagulated fibres, formed from the graphene ribbons, are pulled off, neutralised and washed and then wound on a spool.

EFFECT: invention enables to produce fibres from graphene ribbons.

15 cl, 7 dwg

FIELD: nanotechnology.

SUBSTANCE: group of inventions relates to the field of nanotechnologies, in particular to the technologies of production of carbon nanostructures and nanomaterials for use as substrates for applied catalysts, high-strength fillers, and relates to hollow carbon nanoparticles, carbon nanomaterial and method of its preparation. The carbon nanoparticle has an average size of not less than 5 nm, and comprises a central inner cavity and an outer closed casing enclosing the inner cavity on all sides. At that the outer casing comprises at least a pair of separate carbon layers. The carbon material comprises a mixture of hollow carbon nanoparticles comprising a central inner cavity and an outer closed casing enclosing the inner cavity on all sides. At that the outer casing comprises at least a pair of separate carbon layers, and the single-walled and double-walled carbon nanotubes. The method of producing the carbon material comprising a mixture of hollow carbon nanoparticles and single-walled and double-walled carbon nanotubes comprises catalytic decomposition of hydrocarbons at a temperature of 600-1200°C with obtaining a mixture of carbon nanoparticles, which is separated from the gaseous products and annealed at 1700-2400°C in the atmosphere of inert gas.

EFFECT: invention provides obtaining of novel carbon nanoparticles and nanomaterials having high strength at low weight, which can be used to create new composite light and high strength materials.

4 cl, 2 dwg, 3 ex

FIELD: nanotechnology.

SUBSTANCE: invention relates to a method of production of carbon nanofibres and/or carbon nanotubes. The method comprises the pyrolysis of dispersed cellulosic and/or carbohydrate substrate impregnated with a compound of the element or elements, which metal or alloy, respectively, is able to form carbides in the substantially oxygen-free atmosphere comprising a volatile silicon compound, optionally in the presence of carbon compound.

EFFECT: invention enables to obtain carbon nanotubes or nanofibres of a certain shape.

15 cl, 4 dwg

FIELD: chemistry.

SUBSTANCE: apparatus for thermal treatment of carbon-containing fibrous materials includes a carbonisation device and a graphitation device insulated from the carbonisation device, between which is integrated a device for accumulating and cooling carbonised material and/or washing and drying thereof. The graphitation device can be in the form of two identical electro-graphite furnaces which are not linked with each other and arranged in parallel one over the other. The electro-graphite furnace includes a heating element, a pipe for removing volatile products, a valve at the outlet for preventing entry of gaseous medium into the furnace, pipes for feeding an inert gas, a drive mechanism for transporting the material to be thermally treated, and a cooled metal housing with a heat insulation unit, in which there are horizontal slit-type channels for transporting material. The inlet channel is in the form of a pipe with a rectangular cross-section for removing volatile products, and between its upper and lower inner surfaces over the transported material at an inclination to said surfaces there is a graphite screen with gaps between the upper surface of the channel and the upper end of the screen, and between the lower surface of the channel and the lower end of the screen. The screen divides the heating chamber into a maximum temperature area, having a heater, and a medium temperature area.

EFFECT: high efficiency and stability of the process of thermal treatment of carbon-containing fibrous materials, high quality of the end product.

4 cl, 5 dwg

FIELD: electricity.

SUBSTANCE: nanoobjects sorting method (objects with at least one spatial dimension within the range from ~0.05 nm up to ~500 nm) wherein a) the initial mix with any primary content of electrically conductive nanoobjects and more electrically conductive nanoobjects contact any part of liquid substance surface; b) energy of the above mix of nanoobjects is transmitted so that different nanoobjects depending on degree of their conductivity are subjected to different degree of heating (per time unit), at that during any non-zero period of time upon beginning of the energy transmission T temperature is maintained in any part of the above contact substance surface at the level sufficient for compliance with at least one of the following conditions: (1) temperature T differential module for any part of the above surface of the contact substance and temperature of its active evaporation (Te) is less than ΔTn (i.e. |Te-T|<ΔTn), (2) temperature T differential module for any part of the above surface of the contact substance and temperature of the active chemical reaction threshold with the above substance (Tcs) is less than ΔTn (i.e. |Tcs-T|<ΔTn), (3) temperature T differential module for any part of the above surface of the contact substance and temperature of the active chemical reaction threshold with nanoobjects (Tcn) is less than ΔTn (i.e. |Tcn-T|<ΔTn)), and moreover it is provided that nanoobjects heated up to different temperature (Tn) are subjected to different degree of fixation with the contact surface (up to failure to fix), c) non-fixed and weakly fixed nanoobjects are separated from the surface and d) at least one spatially separated object is received out of pluralities of nanoobjects, which contains nanoobjects with the average conductivity differing from the average conductivity of nanoobjects in the initial mix.

EFFECT: improving the efficiency of sorting.

7 cl, 1 dwg, 12 ex

FIELD: chemistry.

SUBSTANCE: invention relates to chemical technology, in particular to processes of carbonisation of fibrous viscose materials, and can be used in production of graphitised fibrous materials, used as filling agents of composite materials; electrodes; flexible electric heaters; filters of aggressive media; in products for sport and medical purposes, etc. The material is preliminarily subjected to relaxation processing. The obtained material, which contains a pyrolysis catalyst, is continuously transported through zones of carbonisation heating. Carbonisation is carried out to 320-360°C in not less than three zones of heating, heat- and gas-isolated one from another by transporting material with inclination from bottom to top, with increase of heating temperature from 160-200°C in the first zone by 40-60°C in each next zone of heating, in comparison with the previous one. Volatile products are simultaneously removed from the said zones into the evacuation zone, heat- and gas-isolated from the external environment and located above the heating zones and connected with them via a perforated wall. Temperature in the evacuation zone of volatile substances is set by 5-15°C higher than temperatures of the respective heating zones, temperature of the output branch piece being 5-15°C above the maximum temperature of carbonisation.

EFFECT: invention ensures increase of the process efficiency and improvement of quality of the obtained carbon fibrous materials.

2 dwg, 1 tbl, 5 ex

FIELD: chemistry.

SUBSTANCE: method involves treating viscose fibre material with pyrolysis catalysts, heating to carbonisation temperature and subsequent graphitation to temperature of 3000°C in an inert medium. Carbonisation is preceded by preparation of precursor by preliminary washing of the starting material with water and/or 5-10% sodium hyposulphite solution with heating and drying, and/or ionising irradiation with a beam of fast electrons during transportation through the irradiation chamber of an electron accelerator, and/or warm-wet synthesis of a complex catalyst on the surface of viscose fibres and in the pore system thereof in boiling 10-20% aqueous ammonium chloride solution and with addition of diammonium phosphate in ratio of 0.5-4.0, followed by steaming in hot steam and final ventilated drying with constant transportation, which enables to deposit the catalyst in form of an amorphous film.

EFFECT: high stability of the process of carbonising viscose fibre material and improved physical and mechanical properties of the obtained carbon material.

6 cl, 7 dwg, 1 tbl, 12 ex

FIELD: chemistry.

SUBSTANCE: invention relates to modification of the surface of inorganic fibre by forming a highly developed surface of inorganic fibre used as filler by forming carbon nanostructures on the surface of the fibres and can be used in producing high-strength and wear-resistant fibre composite materials. The method of modifying the surface of inorganic fibre involves the following steps: (a) soaking inorganic fibre with a solution of an α2 sinter fraction in organic solvents; (b) drying the soaked fibre; (c) heat treatment of the soaked inorganic fibre at 300-600°C; (d) depositing a transition metal salt onto the surface of the fibre heat treated according to step (c); (e) reducing the transition metal salt to obtain transition metal nanoparticles; (f) depositing carbon onto the transition metal nanoparticles to obtain carbon nanostructures on the surface of the fibre. The composite material contains modified fibre made using the method given above and a matrix of polymer or carbon.

EFFECT: high strength of the composite material in the cross direction relative the reinforcement plane by preventing surface deterioration when modifying with carbon nanostructures.

9 cl, 3 ex, 1 tbl, 5 dwg

FIELD: process engineering.

SUBSTANCE: proposed method comprises processing initial cellulose fibrous material by liquid-phase composition containing silanol groups with molecular weight varying from 900 to 2400 and viscosity varying from 520 to 1700 cPs, and 2-7%-water solution of fire retardant. Processed material is dried to 105-125°C for 60-120 min. Then, carbonisation is performed in air at 140-170°C for 25-40 min. Carbonisation is terminated at 700°C to proceed with high-temperature processing at, at least, 2200°C.

EFFECT: high physical properties and yield.

4 cl, 6 ex

FIELD: chemistry.

SUBSTANCE: invention relates to heterogeneous catalysis and can be used to recycle hydrocarbons and halogen-substituted hydrocarbons when producing composite materials, catalysts, sorbents and filters. Catalytic pyrolysis of hydrocarbons is carried out at 500-700°C on a catalyst obtained by dispersing articles of solid nickel and alloys thereof with other metals, e.g., iron, chromium, as a result of reaction with 1,2-dichloroethane vapour. The catalyst contains dispersed active nickel particles attached to carbon nanofibres with diameter 0.1-0.4 mcm. The starting material used is bromine- or chlorine-containing hydrocarbons, alkanes, olefins, alkynes or aromatic hydrocarbons, e.g., ethane, propane, acetylene, benzene. Output of carbon nanofibres is equal to or more than 600 g per 1 g metal.

EFFECT: high efficiency of the method.

5 cl, 2 dwg, 9 ex

FIELD: electricity.

SUBSTANCE: metal-dielectric structure and method of its manufacturing are related to electronic industry and electronic engineering and may be used both in modern energy-saving systems and components being an integral part of modern processors, in particular for development of microsized and nanosized electromechanical systems. The metal-dielectric structure consists of dielectric and conducting layers made as an assembly of capillaries filled with metals to the required length, at that conducting layers are etched on selective basis at different butt ends and metalised. The conducting layers are represented by two different types of electroconductive materials etched on selective basis at different butt ends, at that the conductive layers may be made of semiconductor materials, conducting glass, carbon nanoparticles and nanotubes while the dielectric layers may be made of optical and electron-tube glass, polymer materials. In cross-section the dielectric and conducting layers may be made as concentric circles. The manufacturing method for the above metal-dielectric structure includes assembly, overstretching, stacking to the unit, at that upon multiple overstretching vacuum filling with conducting materials is performed, and butt ends are etched on selective basis with different chemical composites and then they are metalised.

EFFECT: invention allows increasing capacitance and breakdown voltage for capacitors.

5 cl, 7 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to pressure sensitive adhesives, suitable for use on a wide variety of substrates, including both high surface energy and low surface energy substrates. Pressure sensitive adhesives comprise an acrylate polymer and surface-modified nanoparticles. The surface-modified nanoparticles comprise a nanoparticle comprising a silica surface and surface modifying groups, covalently bonded to the silica surface of the nanoparticle. At least one surface modifying group is a polymeric silane surface modifying group. At least one surface modifying group is a non-polymeric silane surface modifying group.

EFFECT: disclosure also provides a method of preparing pressure sensitive adhesives, including exposing them to UVA and UVC radiation.

21 cl, 2 dwg, 12 tbl

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to pharmaceutical industry, namely to selenium nanocomposites of natural hepatotrophic galactose-containing polysaccharide matrixes, representing water-soluble orange-red powders containing zerovalent selenium (Se0) nanoparticles sized 1-100 nm in the quantitative content of 0.5 - 60 wt %, possessing antioxidant activity for treating and preventing redox-related pathologies, particularly for treating toxic liver damage, to a method for producing and to an antioxidant agent containing the above nanocomposites.

EFFECT: invention provides the targeted agent delivery to liver cells, as well as higher agent accessibility and lower toxic action of selenium.

7 cl, 11 ex, 4 tbl

FIELD: medicine.

SUBSTANCE: method is implemented as follows: preparing a mixture 1 by adding 0.5M aqueous solution of selenious acid 250 mcl in PEG 400 8 ml, mixing thoroughly in a magnetic mixture at min. 750 rpm with pH of the given mixture 7.55; that is followed by preparing a mixture 2 by adding 0.5M aqueous solution of hydrazine hydrochloride 250 mcl in PEG 400 8 ml, mixing thoroughly in a magnetic mixture at min. 750 rpm with pH of the given mixture 0.68. The mixture 1 is added to the mixture 2 by mixing thoroughly drop by drop. The prepared solution is dialysed against distilled water with removing PEG 400 and hydrazine hydrochloride; the surplus water is distilled off in a rotary evaporator at 60 rpm and 70°C. The prepared solution is added with a low-molecular compound specified in a group of: gentamicin, hexamethylene tetramine, methionine, cephalexin, indole-3-carbinol; pH is reduced to 7.2-7.4. The components are mixed in an amount to provide their content in the agent, wt %: biologically active low-molecular compound 0.001-5.0; selenium 0.0001-1.0; water up to 100.

EFFECT: simplifying the technology.

2 tbl, 3 ex, 1 dwg

FIELD: medicine.

SUBSTANCE: invention refers to medicine and describes a method for producing glucosamine sulphate nanocapsules by non-solvent addition, wherein glucosamine sulphate is added in small amounts to a carrageenan suspension used as a nanocapsule shell in butanol, containing E472c preparation 0.01 g as a surfactant; the produced mixture is agitated and added with the non-solvent hexane 6 ml, filtered, washed in hexane and dried.

EFFECT: invention provides simplifying and accelerating the process of nanoencapsulation in carrageenan and higher weight yield.

2 ex

FIELD: chemistry.

SUBSTANCE: invention relates to field of obtaining nanocomposite coatings and can be used in creation of optic microelectronic devices and materials with increased corrosion resistance and wear resistance. Method of obtaining two-phase nanocomposite coating, consisting of titanium carbide nanoclusters, distributed in amorphous hydrocarbon matrix, on products from hard alloys, includes application of adhesive titanium or chromium sublayer, magnetron sputtering of titanium target in gas mixture of acetylene and argon under pressure 0.01-1 Pa and precipitation of dispersed particles of target and carbon-containing radicals on product surface in combination with bombardment of surface with ions, accelerated by bias voltage, with product surface being subjected to purification with argon ions from plasma, generated by electronic beam, before application of adhesive sublayer, and gas mixture being activated in the process of coating application by impact with beam of electrons with energy 100 eV.

EFFECT: invention is aimed at increase of coating adhesion and micro-hardness of obtained products, as well as at provision of high efficiency of application of acetylene in the process of coating application.

1 ex, 2 dwg

FIELD: chemistry.

SUBSTANCE: catalyst contains carrier from porous zeolite KL and binding agent and catalytically active substance - platinum. Carrier additionally contains tin tetrachloride pentahydrate nanopowder, and as binding agent - mixture of gibbsite and rutile powders in equal proportions, with particle size of each not exceeding 40 mcm. Ratio of ingredients is in the following range, wt %: platinum - 0.3-0.8, mixture of gibbsite and rutile powders - 25-70, zeolite KL - 29.12-74.69, tin tetrachloride pentahydrate - 0.01-0.08. Claimed catalyst is characterised by high activity in reactions of aromatisation of synthetic hydrocarbons.

EFFECT: invention also relates to method of obtaining such catalyst.

2 cl, 1 tbl, 4 ex

FIELD: chemistry.

SUBSTANCE: invention relates to field of nanotechnology, in particular to plant growing, and deals with method of obtaining nanocapsules of 6-aminobenzylpurine. Method is characterised by the fact that 6-aminobenzylpurine is used as core and sodium alginate is used as envelope of nanocapsules, obtained by addition of E472c as surfactant to sodium alginate in butanol, portioned addition of 6-aminobenzylpurine into suspension of sodium alginate in butanol and further drop-by-drop introduction of precipitating agent-petroleum ether after formation of separate solid phase in suspension.

EFFECT: simplification and acceleration of process of obtaining nanoparticles and increased output by weight.

3 ex

FIELD: chemistry.

SUBSTANCE: method includes crushing and fractioning of initial material, delignification of initial raw material by alkaline hydration and alkaline pulping with further washings. After that, two-stage acidic hydrolysis with intermediate neutralisation and three washings is performed. Then, three-stage bleaching with hydrogen peroxide H2O2 with three washings is carried out. In second washing finely dispersed ozone is supplied. Obtained product is additionally subjected to homogenisation and drying. Invention makes it possible to obtain final product with virtually absolute absence of lignin, with high organoleptic and physical and chemical properties from lignin-containing initial material.

EFFECT: method does not require application of expensive equipment, does not involve application of highly toxic reagents, includes simple technological operations, is characterised by production scalability.

3 cl, 3 dwg, 1 ex

FIELD: medicine.

SUBSTANCE: invention describes a method for producing Sel-Plex nanocapsules possessing the supramolecular properties by non-solvent addition, characterised by the fact that Sel-Plex is dissolved in dimethyl sulphoxide; the prepared mixture is dispersed in xanthum gum solution used as a nanocapsule shell, in butanol, in the presence of E472c preparation while stirring at 1000 cycles per second; the mixture is added with the precipitator benzol, filtered and dried at room temperature.

EFFECT: simplifying and accelerating the process of nanoencapsulation and ensuring higher weight yield.

4 ex, 12 dwg

Magnetic materials // 2244971

FIELD: magnetic materials whose axial symmetry is used for imparting magnetic properties to materials.

SUBSTANCE: memory element has nanomagnetic materials whose axial symmetry is chosen to obtain high residual magnetic induction and respective coercive force. This enlarges body of information stored on information media.

EFFECT: enhanced speed of nonvolatile memory integrated circuits for computers of low power requirement.

4 cl, 8 dwg

Up!