Polymetallic oxide masses containing molybdenum, bismuth and iron

FIELD: chemistry.

SUBSTANCE: invention relates to polymetallic oxide mass, envelopment catalyst, solid catalytically active moulded article, production of polymetallic oxide mass, method for heterogeneous catalysed gas-phase partial oxidation of propylene to acrolein and acrylic acid. Polymetallic oxide mass as active mass for catalysis of heterogeneous catalysed gas-phase partial oxidation of propylene to acrolein and acrylic acid of general stoichiometric formula I, Mo12BiaCobFecKdSieOx (I) , where variables assume following values: a = from 0.5 to 1, b = from 7 to 8.5, c = from 1.5 to 3.0, d = from 0.04 to 0.15; e = from 0.5 to 2.5 and x is an integer defined by valence and elements other than oxygen in formula I, and following conditions are satisfied: condition 1: 12-b-1.5⋅c=A and 0.5 ≤ A ≤ 1.5; condition 2: 0.2 ≤ a/A ≤ 1.3 and condition 3: 3≤b/c≤9. Envelopment catalyst includes a moulded support article and located on outer surface of moulded support article shell, at least one polymetallic oxide mass as active mass. Method of producing polymetallic oxide mass involves creating, from sources of elementary components thereof, a fine dry mixture and calcining said mixture at temperatures within range of 350–650 °C. Method for heterogeneously catalysed gas-phase partial oxidation of propylene to acrolein and acrylic acid is carried out on catalyst bed, which contains polymetallic oxide mass.

EFFECT: containing Mo, Bi and Fe polymetallic oxide mass as active mass of catalysts for gas-phase partial oxidation with heterogeneous catalysis of propylene to acrolein into main product and acrylic acid as a desirable by-product enable to improve overall selectivity of formation of acrolein and acrylic acid.

12 cl, 6 dwg, 3 tbl

 



 

Same patents:

FIELD: chemistry.

SUBSTANCE: invention relates to method of separating acrylic acid contained as main product, and glyoxal contained as by-product, in mixture of products of partial heterogeneously catalysed vapour-phase oxidation of acrylic acid precursor compound, which contains 3 carbon atoms, in which liquid phase P is obtained, which comprises acrylic acid to an extent of at least 70% of its weight, and, calculated for molar quantity of acrylic acid, contained therein, comprises at least 200 molar ppm of glyoxal, in which separation of glyoxal from acrylic acid is realised by crystallisation from liquid phase P.

EFFECT: method makes it possible to prevent undesirable polymerisation of acrylic acid.

25 cl

FIELD: chemistry.

SUBSTANCE: invention relates to an improved method of producing pure methacrylic acid, which involves: a) gas-phase oxidation of a C4 compound to obtain a methacrylic acid-containing gas phase, b) condensing the methacrylic acid-containing gas phase to obtain an aqueous methacrylic acid solution, c) separating at least a portion of the methacrylic acid from the aqueous methacrylic acid solution to obtain at least one methacrylic acid-containing raw product, d) separating at least a portion of methacrylic acid from the at least one methacrylic acid-containing raw product by thermal separation to obtain pure methacrylic acid, wherein at step (d), methacrylic acid is separated from at least a portion of at least one methacrylic acid-containing raw product by fractionation, and wherein the pure methacrylic acid is collected through a side outlet used for the fractionation column, and the amount of pure methacrylic acid collected over a certain time interval ranges from 40% to 80% of the amount of the methacrylic acid-containing raw product fed into the fractionation column over the same time interval. The invention also relates to an apparatus for producing methacrylic acid using said method, the apparatus comprising: a1) a gas-phase oxidation unit, b1) an absorption unit, c1) a separation unit, and d1) a purification unit, wherein the purification unit has at least one distillation column, wherein the at least one distillation column has at least one side outlet for pure methacrylic acid. The invention also relates to a method of producing methacrylic esters, polymethacrylate, polymethacrylic esters, which includes a step for said production of pure methacrylic acid.

EFFECT: obtaining an end product with fewer by-products while simplifying the process.

32 cl, 3 tbl, 4 dwg, 6 ex

FIELD: chemistry.

SUBSTANCE: described is a method of making catalytically active geometric moulded articles K, which contain as active mass, a multi-element oxide I with general stoichiometric formula (I): [BinZ1bOx]p[BicMo12FedZ2eZ3fZ4gZ5hZ6iOy]1 (I), according to which Z1 denotes tungsten or tungsten and molybdenum, under the condition that the amount of tungsten is at least 10 mol % of the total molar amount Z1, Z2 denotes an element or multiple elements selected from a group which includes nickel and cobalt, Z3 denotes an element or multiple elements selected from a group which includes alkali metals, alkali-earth metals and gallium, Z4 denotes an element or multiple elements selected from a group which includes zinc, phosphorus, arsenic, boron, antimony, tin, cerium, vanadium and chromium, Z5 denotes an element or multiple elements selected from a group which includes silicon, aluminium, titanium, tungsten and zirconium, Z6 denotes an element or multiple elements selected from a group which includes copper, silver, gold, yttrium, lanthanum and lanthanides, a is a number from 0.1 to 3, b is a number from 0.1 to 10, d is a number from 0.01 to 5, e is a number from 1 to 10, f is a number from 0.01 to 2, g is a number from 0 to 5, h is a number from 0 to 10, i is a number from 0 to 1, p is a number from 0.05 to 6, and x, y are respectively numbers defined by valence and number of atoms other than oxygen atoms in formula (1), wherein a fine mixed oxide BiaZ'bOx is formed in form of a starting mass A1, the particle diameter d50A1 of which satisfies the condition 1mcmd50A1100mcm, using sources, other than oxygen, of elements of the component part T of the multi-element oxide I, represented by [BicMo12FedZ2cZ3fZ4gZ5hZ6iOy]i, a homogeneous aqueous mixture M is formed in an aqueous medium, wherein: each of the sources used when forming the aqueous mixture M passes through a dispersion degree Q, characterised by that the particle diameter corresponds to d90Q5mcm, and the aqueous mixture M contains bismuth, molybdenum, iron, Z2, Z3, Z4, Z3 and Z6 in the stoichiometric formula (I*): BicMo12FedZ2cZ3fZ4gZ5hZ6i (I*); from the aqueous mixture M, by drying and controlling the dispersion degree d90A2, a fine starting mass A2 is formed, the particle diameter d90A2 of which satisfies the condition400mcmd90A210mcm; the starting mass A1 is mixed with starting mass A2 or the starting mass A1, starting mass A2 and a fine auxiliary moulding agent are mixed to obtain a fine starting mass A3, which contains elements of the multi-element oxide I other than oxygen that are introduced therein through starting mass A1 and A2, in stoichiometric formula (1**): [BiaZ'b]p[BicMo12FedZ2eZ3fZ4gZ5hZ6i]l (I**);geometric moulded articles V are formed from the fine starting mass A3; the moulded articles V undergo heat treatment at high temperature to obtain catalytically active geometric moulded articles K, wherein the stoichiometric coefficient "c" lies in the range 0<c≤0.8.

EFFECT: described is a method for heterogeneously catalysed partial gas-phase oxidation of an alkane, alkanol, alkanal, alkene and/or alkenal containing 3-6 carbon atoms in a catalyst bed, wherein the catalyst bed contains catalytically active moulded articles which can be made using said method.

15 cl, 3 tbl, 13 ex

FIELD: chemistry.

SUBSTANCE: invention relates to methods of producing catalytic moulded articles and use thereof. Described is a method of making catalytically active geometric moulded articles K, which contain as active mass, a multi-element oxide I with general stoichiometric formula (I): [BilWbOx]a[Mo12Z1cZ2dFeeZ3fZ4gZ5hOy]l (I), in which Z1 denotes an element or multiple elements selected from a group which includes nickel and cobalt, Z2 denotes an element or multiple elements selected from a group which includes alkali metals, alkali-earth metals and thallium, Z3 denotes an element or multiple elements selected from a group which includes zinc, phosphorus, arsenic, boron, antimony, tin, cerium, vanadium, chromium and bismuth, Z denotes an element or multiple elements selected from a group which includes silicon, aluminium, titanium, tungsten and zirconium, Z5 denotes an element or multiple elements selected from a group which includes copper, silver, gold, yttrium, lanthanum and lanthanides, a is a number from 0.1 to 3, b is a number from 0.1 to 10, c is a number from 1 to 10, d is a number from 0.01 to 2, e is a number from 0.01 to 5, f is a number from 0 to 5, g is a number from 0 to 10, h is a number from 0 to 1, and x, y are respectively defined by valence and number of atoms other than oxygen in formula (I), wherein a fine mixed oxide BilWbOx is formed in form of a starting mass A1, the particle diameter d50A1 of which satisfies the condition 1 mcm ≤ d50A1 ≤10 mcm; a homogeneous aqueous mixture M is formed in an aqueous medium using sources, other than oxygen, of elements of the component part T=[Mo12ZlcZ2dFeeZ3fZ4gZ5hOy]l of the multi-element oxide I, wherein: each of the sources used when forming the aqueous mixture M passes through a dispersion degree Q, which corresponds to particle diameter d90Q ≤ 5 mcm, and the aqueous mixture M contains molybdenum, Z1, Z2, iron, Z3, Z4 and Z5 in the stoichiometric formula (I*): Mo12ZlcZ2dFecZ3fZ49Z5h (I*); from the aqueous mixture M, by drying and controlling the dispersion degree, a fine starting mass A2 is formed, the particle diameter d90A2 of which satisfies the condition 200 mcm ≥ d90A2 ≥ 20 mcm; the starting mass A1 is mixed with starting mass A2 or the starting mass A1, starting mass A2 and a fine auxiliary moulding agent are mixed to obtain a fine starting mass A3, which contains elements of the multi-element oxide I other than oxygen that are introduced therein through starting mass A1 and A2, in stoichiometric formula (1**): [BilWb]a[Mo12ZlcZ2dFeeZ3fZ4gZ5h]i (I**); geometric moulded articles V are formed from the fine starting mass A3, and the moulded articles V undergo heat treatment at high temperature to obtain catalytically active geometric moulded articles K, wherein the product F:(d50A1)0,7(d90A2)1,5(a1) is ≥820.

EFFECT: described is a method for heterogeneously catalysed partial gas-phase oxidation of an alkane, alkanol, alkanal, alkene and/or alkenal containing 3-6 carbon atoms in a catalyst bed, wherein the catalyst bed contains catalytically active moulded articles made using said method.

15 cl, 8 dwg, 10 tbl, 2 ex

FIELD: process engineering.

SUBSTANCE: invention relates to plate-reactor, method of its fabrication and method of producing reaction product. Reactor comprises reaction chamber for interaction of initial gases, multiple heat-exchange plates arranged side by side in reaction chamber and device to feed heat racier in said heat-exchange plates. Every said heat-exchange plates comprises multiple heat-exchange tubes interconnected along periphery or edges of cross-section outline. Note here that design distance between surfaces of said plates as-measured in direction perpendicular to the plate. Surfaces consisting of axes of said plates are equidistant relative to aforesaid plane to make 5-50 mm while departure of actual distance between surface from design magnitude makes -0.6 to plus 2.0 mm.

EFFECT: ruled out abrupt increase in reaction rate, easy distribution of catalyst, decreased pressure losses, eliminated catalyst damages, high efficiency.

31 cl, 43 dwg, 6 tbl, 13 ex

FIELD: chemistry.

SUBSTANCE: invention relates to an improved method of using gas-phase partial oxidation on a heterogeneous catalyst of acrolein into acrylic acid and methacrolein into methacrylic acid on a fixed catalyst bed lying in a shell-and-tube reactor in reaction tubes of a vertical bundle of reaction tubes enclosed in the reactor shell, when both ends of each of the reaction tubes are open and each reaction tube, through its top end, tightly enters a through-hole which is tightly built into the top part of the reactor shell of an upper tube sheet, and through its bottom end, tightly enters a through hole which is tightly built into the bottom part of the reactor shell of a lower tube sheet, wherein the outer surface of the reaction tubes, the upper and lower tube sheets, as well as the reactor shell together bound the space which surrounds the reaction tubes, wherein each of the two tube sheets is closed by a reactor cover having at least one hole, when in order to put into operation, a starting gaseous reaction mixture containing ≥3 vol. % acrolein or methacrolein and also molecular oxygen is fed into the reaction tubes of the shell-and-tube reactor through at least one hole, denoted hereafter as E, in one of the two reactor covers, and the gaseous product mixture containing acrylic acid or methacrylic acid, which is formed as a result of gas-phase partial oxidation of acrolein or methacrolein into acrylic acid or methacrylic acid by passing through a fixed catalyst bed lying in the reaction tubes, is removed through at least one hole in the other reactor cover, wherein at least one liquid heat carrier is fed from the side of the shell to the reaction tubes of the shell-and-tube reactor, the movement of the liquid heat carrier being such that each of the surfaces of both tube shells facing each other is covered by the liquid heat carrier, and wherein at least one liquid heat carrier enters the space surrounding the reaction tubes with temperature Twin and comes out of said space with temperature Twout. At the moment of use, the starting gaseous reaction mixture containing ≥3 vol. % acrolein or methacrolein is fed through at least one hole in the reactor cover, wherein temperature Twin of at least one liquid carrier which is in contact with the tube sheet closed by the reactor cover having at least one hole E, denoted hereinafter as reactor sheet E, is not lower than 290°C; the starting gaseous reaction mixture coming through at least one hole E has temperature ≤285°C and temperature of the surface of the reactor sheet E facing the reactor cover having at least one hole E, denoted hereinafter as the surface of reactor sheet E, is ≤285°C.

EFFECT: improved method.

16 cl, 4 dwg, 6 tbl, 3 ex

FIELD: process engineering.

SUBSTANCE: invention relates to production of catalyst for producing unsaturated aldehyde and unsaturated carboxyl acid. Proposed method comprises applying catalyst powder coating on inert substrate to produce applied catalyst wherein inert substrate features ring shape and has outer periphery bent in longitudinal direction of substrate. Note here that catalyst is produced in atmosphere of granulating chamber at application of coating to ensure absolute humidity of 0.01 and higher. Catalyst thus produced is used for gas-phase oxidation of propylene, isobutylene, tert-butyl alcohol or methyl-tert-butyl ether to produce appropriate unsaturated aldehyde, or for gas-phase oxidation of said aldehyde to produce carboxylic acid.

EFFECT: higher activity and friction stability at high yield of target product.

4 cl, 9 ex

FIELD: chemistry.

SUBSTANCE: invention relates to an improved method for heterogeneously catalysed partial gas-phase oxidation of propylene to acrylic acid, according to which in the first reaction zone an initial gaseous reaction mixture 1, containing propylene and molecular oxygen as reactants and at least propane as an inert diluent gas, with molar ratio O2: C3H6 ≥ 1, at a first reaction step at high temperature, is passed through at least one first catalyst layer whose active mass contains at least one polymetallic oxide based on molybdenum, iron and bismuth, wherein conversion of propylene during single passage through the first catalyst layer is ≥90 mol %, while total selectivity (SAC) of formation acrolein and acrylic aicd as a by-product is ≥80 mol %; if necessary, temperature of the gaseous mixture of reaction products obtained at the first reaction step is lowered by direct cooling, indirect cooling or direct and indirect cooling; if necessary, a secondary gas is added to said mixture in form of molecular oxygen or inert gas or molecular oxygen and inert gas, and in form of an initial gaseous reaction mixture 2, containing acrolein and molecular oxygen as reactants and at least propane as an inert diluent gas, with molar ratio molecular oxygen O2: C3H4O≥0.5, at a second reaction step at high temperature and with formation of a gaseous mixture of reaction products 2, is passed through at least one second catalyst layer whose active mass contains at least one polymetallic oxide based on molybdenum and vanadium, wherein conversion of acrolein during single passage through the second catalyst layer is ≥95 mol %, and where total selectivity (SAA) of formation of acrylic acid at both reaction steps in terms of converted propylene is ≥70 mol %, and where the initial gaseous reaction mixture 1 contains ≤3 mol % cyclopropane in terms of the molar amount of propane contained therein, and which was obtained using crude propylene consisting of at least 90 wt % propylene from at least 97 wt % propane and propylene.

EFFECT: product obtained using the disclosed method has very low content of propionic acid.

28 cl, 2 ex

FIELD: chemistry.

SUBSTANCE: in a first reaction zone, a starting reaction gas mixture 1 which contains propylene, molecular oxygen and at least one inert diluent gas molar ratio O2:C3H6≥1, at a first reaction stage at high temperature is passed through at least one first catalyst bed whose active mass contains at least one polymetal oxide based on molybdenum, iron and bismuth, wherein conversion of propylene in a single passage through the first catalyst bed is ≥90 mol %, while the total selectivity (SAC) of formation of acrolein and acrylic acid by-product is ≥80 mol %; optionally the temperature of the product gas mixture 1 obtained at the first reaction stage is reduced by direct cooling or indirect cooling or direct and indirect cooling; optionally secondary gas in the form of molecular oxygen or inert gas or molecular oxygen and inert gas is added to product gas mixture 1, and as a starting reaction gas mixture 2 which contains acrolein, molecular oxygen and at least one inert diluent gas in molar ratio O2:C3H4O≥0.5 at a second reaction stage at high temperature is passed through at least one second catalyst bed whose active mass contains at least one polymetal oxide based on molybdenum and vanadium, wherein acrolein conversion in a single passage through the second catalyst bed is ≥90% mol %. Total selectivity (SAA) of formation of acrylic acid on both reaction stages with respect to converted propylene is ≥70 mol %, after which acrylic acid contained in the product gas mixture 2 obtained at the second reaction stage in a separation zone is converted to condensed from which it is separated in a second separation zone by at least one thermal separation technique, characterised by that the starting reaction gas mixture 1 contains from 100 mol ppm to 3 mol % cyclopropane based on the molar amount of propylene contained therein, and propylene, required as the starting substance for this method, is added to the starting reaction gas mixture 1 in form of crude propylene which, based on volume thereof, contains at least 90 vol. % propylene, wherein at least one thermal separation technique in the second separation zone includes at least one technique for crystallisation separation of acrylic acid from the condensation phase.

EFFECT: method enables to obtain the end product depleted of propionic acid.

16 cl, 1 ex

FIELD: blasting.

SUBSTANCE: in the first reaction zone A at least two gaseous supply flows are supplied, containing propane, at least one of which contains fresh propane, to produce a reaction gas A; - in the reaction zone A the reaction gas A passes through at least one layer of catalyst, in which, by means of partial heterogeneous-catalysed dehydration of propane, molecular hydrogen and propylene are produced; - molecular oxygen is supplied into the reaction zone A, which oxidises in the reaction zone A at least a part of molecular hydrogen contained in the reaction gas A to water vapour - the gas-product A is taken from the reaction zone A, containing propylene, propane, molecular hydrogen and water vapour; B) water vapour contained in the gas-product A, if necessary, fully or partially by means of direct and/or indirect cooling, is separated in the first zone of separation I by the method of condensation with preservation of the gas-product A*; C) in the reaction zone B, by supply of molecular oxygen, the gas-product A or the gas-product A* is used to supply at least into one oxidisation reactor with the reaction gas B, comprising propane, propylene and molecular hydrogen, and propylene contained in it is exposed to heterogeneous-catalysed partial oxidation in the gas phase to produce acrolein or acrylic acid or their mixture as a target product, and also the gas-product B containing non-converted propane; D) from the reaction zone B the gas-product B is released, and the target product contained in it is separated in the second separation zone II, besides, the residual gas containing propane remains; E) whenever necessary, a part of the residual gas is returned having the composition of the residual gas, as a supply flow containing propane, into the reaction zone A; F) in the zone of separation III propane contained in the residual gas that has not been returned into the reaction zone A, from which earlier, if required, water vapour contained in it has been removed, possibly, by condensation and/or using a separating membrane, molecular hydrogen contained in it has been fully or partially removed, is separated by means of absorption in an organic dissolvent (absorbent) with production of absorbate containing propane; and G) in the separation zone IV propane is separated from absorbate and returned into the reaction zone A in the form of a supply flow containing propane, besides, in the reaction zone A enough amount of molecular hydrogen is oxidised to water vapour so that this hydrogen amount oxidised in the reaction zone A to the water vapour makes from 30 to 70 mol% of molecular hydrogen amount produced in the reaction zone A, and for values of the working pressure P in each case identified at the inlet to an appropriate area, in different zones of the method under the invention the following ratios are in effect: Preaction zone A>Pseparation zone I>Preaction zone B>Pseparation zone II>Pseparation zone III>Pseparation zone IV>Preaction zone A.

EFFECT: higher yield.

27 cl, 6 ex

FIELD: chemistry.

SUBSTANCE: invention relates to novel compounds of formula (I), which can be applied as an aromatic compound or a smell-masking agent. In formula (I) R stands for a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl or =CH2; Z stands for CN or CHO; and there is not more than one dashed bond. The following conditions must be observed: if Z stands for CHO and there is one of the dashed bonds, R does not stand for a hydrogen atom, and if there is a dashed bond between carbons Ca and Cb, R does not stand for a group = CH2. The invention also relates to a method of obtaining a formula (I) compound, its application as the aromatic compound or the smell-masking agent, and a perfumery composition.

EFFECT: increased activity of the composition application.

10 cl, 1 tbl, 10 ex

FIELD: chemistry.

SUBSTANCE: invention relates to an improved method of obtaining acrolein from glycerol. Dehydration of glycerol is carried out in the presence of a catalyst based on zirconium oxide, consisting at least of: a) mixed zirconium oxide and at least of one metal M, where the said metal is selected from niobium and vanadium, b) zirconium oxide and at least one metal M oxide, where the said metal is selected from niobium, tantalum and vanadium, c) silicon oxide and mixed zirconium oxide and at least one metal M, where the said metal is selected from tungsten, cerium, manganese, niobium, tantalum, titanium, vanadium and silicon, d) titanium oxide, mixed zirconium oxide and at least one metal M, where the said metal is selected from tungsten, cerium, manganese, niobium, tantalum, titanium, vanadium and silicon. The invention also relates to a method of obtaining 3-(methylthio)propionic aldehyde from acrolein and to application of a catalyst, selected from the catalysts a), b), c) or d) for conversion of glycerol into acrolein.

EFFECT: method makes it possible to obtain acrolein by catalytic dehydration of glycerol in the presence of catalyst, which provides conversion of all initial glicerine and at the same time can be easily regenerated during short time without losing activity and selectivity and possesses a long service term.

13 cl, 4 dwg, 5 tbl, 18 ex

FIELD: chemistry.

SUBSTANCE: described is a method of making catalytically active geometric moulded articles K, which contain as active mass, a multi-element oxide I with general stoichiometric formula (I): [BinZ1bOx]p[BicMo12FedZ2eZ3fZ4gZ5hZ6iOy]1 (I), according to which Z1 denotes tungsten or tungsten and molybdenum, under the condition that the amount of tungsten is at least 10 mol % of the total molar amount Z1, Z2 denotes an element or multiple elements selected from a group which includes nickel and cobalt, Z3 denotes an element or multiple elements selected from a group which includes alkali metals, alkali-earth metals and gallium, Z4 denotes an element or multiple elements selected from a group which includes zinc, phosphorus, arsenic, boron, antimony, tin, cerium, vanadium and chromium, Z5 denotes an element or multiple elements selected from a group which includes silicon, aluminium, titanium, tungsten and zirconium, Z6 denotes an element or multiple elements selected from a group which includes copper, silver, gold, yttrium, lanthanum and lanthanides, a is a number from 0.1 to 3, b is a number from 0.1 to 10, d is a number from 0.01 to 5, e is a number from 1 to 10, f is a number from 0.01 to 2, g is a number from 0 to 5, h is a number from 0 to 10, i is a number from 0 to 1, p is a number from 0.05 to 6, and x, y are respectively numbers defined by valence and number of atoms other than oxygen atoms in formula (1), wherein a fine mixed oxide BiaZ'bOx is formed in form of a starting mass A1, the particle diameter d50A1 of which satisfies the condition 1mcmd50A1100mcm, using sources, other than oxygen, of elements of the component part T of the multi-element oxide I, represented by [BicMo12FedZ2cZ3fZ4gZ5hZ6iOy]i, a homogeneous aqueous mixture M is formed in an aqueous medium, wherein: each of the sources used when forming the aqueous mixture M passes through a dispersion degree Q, characterised by that the particle diameter corresponds to d90Q5mcm, and the aqueous mixture M contains bismuth, molybdenum, iron, Z2, Z3, Z4, Z3 and Z6 in the stoichiometric formula (I*): BicMo12FedZ2cZ3fZ4gZ5hZ6i (I*); from the aqueous mixture M, by drying and controlling the dispersion degree d90A2, a fine starting mass A2 is formed, the particle diameter d90A2 of which satisfies the condition400mcmd90A210mcm; the starting mass A1 is mixed with starting mass A2 or the starting mass A1, starting mass A2 and a fine auxiliary moulding agent are mixed to obtain a fine starting mass A3, which contains elements of the multi-element oxide I other than oxygen that are introduced therein through starting mass A1 and A2, in stoichiometric formula (1**): [BiaZ'b]p[BicMo12FedZ2eZ3fZ4gZ5hZ6i]l (I**);geometric moulded articles V are formed from the fine starting mass A3; the moulded articles V undergo heat treatment at high temperature to obtain catalytically active geometric moulded articles K, wherein the stoichiometric coefficient "c" lies in the range 0<c≤0.8.

EFFECT: described is a method for heterogeneously catalysed partial gas-phase oxidation of an alkane, alkanol, alkanal, alkene and/or alkenal containing 3-6 carbon atoms in a catalyst bed, wherein the catalyst bed contains catalytically active moulded articles which can be made using said method.

15 cl, 3 tbl, 13 ex

FIELD: chemistry.

SUBSTANCE: invention relates to methods of producing catalytic moulded articles and use thereof. Described is a method of making catalytically active geometric moulded articles K, which contain as active mass, a multi-element oxide I with general stoichiometric formula (I): [BilWbOx]a[Mo12Z1cZ2dFeeZ3fZ4gZ5hOy]l (I), in which Z1 denotes an element or multiple elements selected from a group which includes nickel and cobalt, Z2 denotes an element or multiple elements selected from a group which includes alkali metals, alkali-earth metals and thallium, Z3 denotes an element or multiple elements selected from a group which includes zinc, phosphorus, arsenic, boron, antimony, tin, cerium, vanadium, chromium and bismuth, Z denotes an element or multiple elements selected from a group which includes silicon, aluminium, titanium, tungsten and zirconium, Z5 denotes an element or multiple elements selected from a group which includes copper, silver, gold, yttrium, lanthanum and lanthanides, a is a number from 0.1 to 3, b is a number from 0.1 to 10, c is a number from 1 to 10, d is a number from 0.01 to 2, e is a number from 0.01 to 5, f is a number from 0 to 5, g is a number from 0 to 10, h is a number from 0 to 1, and x, y are respectively defined by valence and number of atoms other than oxygen in formula (I), wherein a fine mixed oxide BilWbOx is formed in form of a starting mass A1, the particle diameter d50A1 of which satisfies the condition 1 mcm ≤ d50A1 ≤10 mcm; a homogeneous aqueous mixture M is formed in an aqueous medium using sources, other than oxygen, of elements of the component part T=[Mo12ZlcZ2dFeeZ3fZ4gZ5hOy]l of the multi-element oxide I, wherein: each of the sources used when forming the aqueous mixture M passes through a dispersion degree Q, which corresponds to particle diameter d90Q ≤ 5 mcm, and the aqueous mixture M contains molybdenum, Z1, Z2, iron, Z3, Z4 and Z5 in the stoichiometric formula (I*): Mo12ZlcZ2dFecZ3fZ49Z5h (I*); from the aqueous mixture M, by drying and controlling the dispersion degree, a fine starting mass A2 is formed, the particle diameter d90A2 of which satisfies the condition 200 mcm ≥ d90A2 ≥ 20 mcm; the starting mass A1 is mixed with starting mass A2 or the starting mass A1, starting mass A2 and a fine auxiliary moulding agent are mixed to obtain a fine starting mass A3, which contains elements of the multi-element oxide I other than oxygen that are introduced therein through starting mass A1 and A2, in stoichiometric formula (1**): [BilWb]a[Mo12ZlcZ2dFeeZ3fZ4gZ5h]i (I**); geometric moulded articles V are formed from the fine starting mass A3, and the moulded articles V undergo heat treatment at high temperature to obtain catalytically active geometric moulded articles K, wherein the product F:(d50A1)0,7(d90A2)1,5(a1) is ≥820.

EFFECT: described is a method for heterogeneously catalysed partial gas-phase oxidation of an alkane, alkanol, alkanal, alkene and/or alkenal containing 3-6 carbon atoms in a catalyst bed, wherein the catalyst bed contains catalytically active moulded articles made using said method.

15 cl, 8 dwg, 10 tbl, 2 ex

FIELD: chemistry.

SUBSTANCE: described is a method of producing acrolein by dehydrating glycerol in the presence of tungsten compound-containing solid-phase catalysts with Hammett acidity H0 less than +2, which contain palladium as a promoter.

EFFECT: high output and enabling catalyst regeneration without loss of properties thereof.

23 cl, 3 ex

FIELD: process engineering.

SUBSTANCE: invention relates to production of catalyst for producing unsaturated aldehyde and unsaturated carboxyl acid. Proposed method comprises applying catalyst powder coating on inert substrate to produce applied catalyst wherein inert substrate features ring shape and has outer periphery bent in longitudinal direction of substrate. Note here that catalyst is produced in atmosphere of granulating chamber at application of coating to ensure absolute humidity of 0.01 and higher. Catalyst thus produced is used for gas-phase oxidation of propylene, isobutylene, tert-butyl alcohol or methyl-tert-butyl ether to produce appropriate unsaturated aldehyde, or for gas-phase oxidation of said aldehyde to produce carboxylic acid.

EFFECT: higher activity and friction stability at high yield of target product.

4 cl, 9 ex

FIELD: chemistry.

SUBSTANCE: invention relates to a method of transferring heat to a liquid mixture containing at least one (meth)acrylic monomer selected from a group comprising acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, glycidyl acrylate, glycidyl methacrylate, methyl acrylate, methyl methacrylate, n-butyl acrylate, isobutyl acrylate, isobutyl methacrylate, n-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, ethyl acrylate, ethyl methacrylate, 2-ethylhexyl acrylate and 2-ethylhexyl methacrylate, through an indirect heat exchanger on whose primary side a fluid heat carrier flows and on whose secondary side simultaneously flows said liquid mixture containing at least one (meth)acrylic monomer, wherein the liquid mixture containing at least one (meth)acrylic monomer, in order to reduce contamination, additionally contains at least one active compound other than (meth)acrylic monomers which is selected from a group consisting of tertiary amines, salts formed from a tertiary amine and a Bransted acid, and quaternary ammonium compounds, under the condition that none of the tertiary and quaternary nitrogen atoms in the at least one active compound bears a phenyl group but at least some of said tertiary and quaternary nitrogen atoms bear at least one alkyl group.

EFFECT: improved method.

15 cl, 16 ex

FIELD: chemistry.

SUBSTANCE: invention relates to campholene derivatives of general formula (I), a fragrant or aromatic flavouring composition and use thereof in perfumery to obtain perfumed bases and concentrates, as aromatic agents for producing flavouring compositions or products, as agents which mask smell and/or taste, including in a combination with other perfumery or aromatic ingredients, solvents and additives. In general formula (I) , R1, R2, R3, R4 and R5 each independently denote a hydrogen atom or a linear or branched C1-C5 alkyl or C2-C5 alkenyl group, - Y denotes CN, C(O)R6 or a CR6(ORα)(ORβ) group, where R6 denotes a hydrogen atom or a linear or branched C1-C5 alkyl or C2-C5 alkenyl group, and Rα and Rβ simultaneously denote a linear or branched C1, C2, C3, C4 or C5 alkyl or C2, C3, C4 or C5 alkenyl group, the - 5-member ring is saturated or contains a double bond between C3' and C4' in formula (I), and the side chain, if necessary, contains a double bond between C1 and C2 and/or between C3 and C4, under the condition that said derivative is not 3-methyl-6-(2,2,3-trimethyl-cyclopent-3-enyl)-hex-4-enal.

EFFECT: use of campholene derivatives to obtain perfumed bases and concentrates.

10 cl, 1 tbl, 2 dwg, 20 ex

FIELD: blasting.

SUBSTANCE: in the first reaction zone A at least two gaseous supply flows are supplied, containing propane, at least one of which contains fresh propane, to produce a reaction gas A; - in the reaction zone A the reaction gas A passes through at least one layer of catalyst, in which, by means of partial heterogeneous-catalysed dehydration of propane, molecular hydrogen and propylene are produced; - molecular oxygen is supplied into the reaction zone A, which oxidises in the reaction zone A at least a part of molecular hydrogen contained in the reaction gas A to water vapour - the gas-product A is taken from the reaction zone A, containing propylene, propane, molecular hydrogen and water vapour; B) water vapour contained in the gas-product A, if necessary, fully or partially by means of direct and/or indirect cooling, is separated in the first zone of separation I by the method of condensation with preservation of the gas-product A*; C) in the reaction zone B, by supply of molecular oxygen, the gas-product A or the gas-product A* is used to supply at least into one oxidisation reactor with the reaction gas B, comprising propane, propylene and molecular hydrogen, and propylene contained in it is exposed to heterogeneous-catalysed partial oxidation in the gas phase to produce acrolein or acrylic acid or their mixture as a target product, and also the gas-product B containing non-converted propane; D) from the reaction zone B the gas-product B is released, and the target product contained in it is separated in the second separation zone II, besides, the residual gas containing propane remains; E) whenever necessary, a part of the residual gas is returned having the composition of the residual gas, as a supply flow containing propane, into the reaction zone A; F) in the zone of separation III propane contained in the residual gas that has not been returned into the reaction zone A, from which earlier, if required, water vapour contained in it has been removed, possibly, by condensation and/or using a separating membrane, molecular hydrogen contained in it has been fully or partially removed, is separated by means of absorption in an organic dissolvent (absorbent) with production of absorbate containing propane; and G) in the separation zone IV propane is separated from absorbate and returned into the reaction zone A in the form of a supply flow containing propane, besides, in the reaction zone A enough amount of molecular hydrogen is oxidised to water vapour so that this hydrogen amount oxidised in the reaction zone A to the water vapour makes from 30 to 70 mol% of molecular hydrogen amount produced in the reaction zone A, and for values of the working pressure P in each case identified at the inlet to an appropriate area, in different zones of the method under the invention the following ratios are in effect: Preaction zone A>Pseparation zone I>Preaction zone B>Pseparation zone II>Pseparation zone III>Pseparation zone IV>Preaction zone A.

EFFECT: higher yield.

27 cl, 6 ex

FIELD: chemistry.

SUBSTANCE: invention relates to an improved method of producing at least one product from acrolein and acrylic acid via partial oxidation of propylene, where a) purified propane is converted at the first reaction step in the presence and/or absence of molecular oxygen, at least one dehydrogenation from a group comprising homogeneous dehydrogenation, heterogeneous catalytic dehydrogenation, homogeneous oxydehydrogenation and heterogeneous catalytic oxydehydrogenation, wherein a gaseous mixture 1 is obtained, which contains unconverted propane and the formed propylene, and b) optional separation from the total amount or partial amount of the gaseous mixture 1 of a partial amount of components other than propane and propylene contained therein, e.g., hydrogen, carbon monoxide, water vapour and/or optional conversion thereof to other compounds, e.g., water and carbon dioxide, and where a gaseous mixture 1' is obtained, which contains propane and propylene, and on at least one of the following reaction steps, c) the gaseous mixture 1 or gaseous mixture 1' or a mixture from the formed gaseous mixture 1' and the remaining gaseous mixture 1 as a component of a gaseous mixture 2 are subjected to heterogeneous catalytic gas-phase partial oxidation of propylene contained in gaseous mixture 1 and/or gaseous mixture 1', wherein a gaseous mixture 3 is obtained, which contains at least one product, d) on at least one separation step, the product is separated from gaseous mixture 3 and from the remaining residual gas, at least propane is returned to the first reaction step, where purified propane is obtained from crude propane which contains ≥90 wt % propane, ≤99 wt % propane and propylene, ≥100 ppm hydrocarbons, having 2 carbon atoms, and ≥100 ppm hydrocarbons, having 4 carbon atoms, under the condition that crude propane is fed into the fractionation column and purified propane is obtained higher than the feeding point under the condition that content of hydrocarbons having 2 carbon atoms, in wt %, in terms of the contained propane, in the purified propane is more than 100% of the corresponding content in crude propane and content of hydrocarbons having 4 carbon atoms, in wt %, in terms of content of propane, in the purified propane is at most 50% of the corresponding content in crude propane.

EFFECT: method enables to cut design expenses owing to no separation of C2-hydrocarbons during distillation.

48 cl, 1 ex

FIELD: chemistry.

SUBSTANCE: invention relates to field of catalysis. Described is method of manufacturing geometrical moulded products from catalyst K, in which active mass represents multi-element oxide, which contains Mo element, Bi and/or V elements, as well as one or several elements from series Co, Ni, Fe, Cu and alkali metals, in which highly dispersed mixture is obtained by means of sources of different elements, said mixture is coarsened to powder by pressing, and moulded product V is formed from said coarser powder by agglomeration; said products are divided into undamaged moulded products V+ and damaged moulded products V-, undamaged moulded products V+ are made into moulded products from catalyst K, and damaged moulded products V- are crushed and returned into production of highly dispersed mixture.

EFFECT: reduction of material loss in the process of catalyst production, improvement of working characteristics of catalyst.

5 tbl, 1 ex

Up!