Method of retooling common oil refinery into enterprise for production of fuel from biological material

FIELD: oil and gas industry.

SUBSTANCE: invention relates to a method of retooling a common refinery into an enterprise for production of fuel from biological raw materials, distinguished by process circuit, which enables to process biological raw materials for producing biofuel. Method of retooling an oil refinery, including system comprising two units, U1 and U2 for hydrodesulphurisation, into enterprise for production of fuel from biological raw material, which includes a unit for obtaining hydrocarbon fractions from biological mixtures, containing ethers of fatty acids, by means of their hydrodeoxygenation (HDO) and isomerisation of (ISO), wherein each of units U1 and U2 for hydrodesulphurisation includes: reactor for hydrodesulphurisation, (A1) for unit U1 and (A2) for unit U2, wherein said reactor contains a catalyst for hydrodesulphurisation; one or more heat exchangers for heat exchange between raw material and a stream exiting reactor, E1 in unit U1 and E2 in unit U2; heating system for raw material located above reactor along process, F1 in unit of U1 and F2 in unit U2; acid gas processing unit, located below reactor along process and containing absorbent (B) for H2S, T1 in unit U1 and T2 in unit U2, said method includes: installing between units U1 and U2 line L, which connects them in series; installing a product recirculation line for unit U1 and, optionally, for unit U2, replacing catalyst for hydrodesulphurisation in reactor A1 with hydrodeoxygenation catalyst; replacing catalyst for hydrodesulphurisation in reactor A2 with isomerisation catalyst; installing bypass line X of unit T2 for acid gas treatment unit U2; replacing absorbent (B) in unit T1 for acid gas processing with specific absorbent for CO2 and H2S. Also disclosed is a plant for production of fuel and a method of producing hydrocarbon fractions.

EFFECT: considerable reduction of pollutant emissions into atmosphere, recycling equipment.

16 cl, 1 dwg

 



 

Same patents:

FIELD: chemistry.

SUBSTANCE: invention relates to a method of obtaining low-viscous white oils, in which vacuum gasoil is subjected to hydrocracking with the volume ratio of hydrogen to a raw material of 800-1000 nm3/m3, volume rate of the raw material supply of 0.4-0.6 h-1, temperature of 340-360°C and partial pressure of hydrogen of 20-30 MPa on Ni/Mo catalyst, applied on a silica-alumina carrier, with the content of active components counted per the catalyst burnt at a temperature of 600°C, wt %: MoO3 - 35.0, NiO - 15.0, SiO2 - 7.0 or on Ni/W catalyst, applied on the silica-alumina carrier, with the content of active components counter per the catalyst burnt at a temperature of 600°C, wt %: WO3 - 25.0, NiO - 10.0, SiO2 - 5.0. The target fraction with the boiling out temperature from 280 to 340°C, the content of aromatic hydrocarbons above the required norm and the temperature of solidification not higher than minus 10°C is separated from the obtained stream, boiling out in the range of temperatures from 280 to 400°C. Hydration of the target fraction is carried out by its contact with hydrogen with the volume ratio of hydrogen to the raw material of 800-950 nm3/m3 on the catalyst at a temperature of 240-320°C, partial pressure of hydrogen of 6.0-8.0 MPa, volume rate of the raw material supply 0.25-0.5 h-1.

EFFECT: reduction of the technological process of obtaining white oils for the medical purpose.

4 cl, 1 tbl, 5 ex

FIELD: oil-and-gas industry.

SUBSTANCE: invention relates to the method of hydroprocessing of hydrocarbonic raw materials comprising: hydrocracking of the first flow of hydrocarbons in presence of the first hydrogen flow and hydrocracking catalyst for obtaining of the outgoing hydrocracking flow; hydrotreating of the second flow of hydrocarbons in presence of the second flow of hydrogen and the hydrotreating catalyst for obtaining of the outgoing hydrotreating flow; separation of the outgoing hydrotreating flow at the temperature 121-316°C (250-600°F) into the vaporous outgoing hydrotreating hydrogen containing flow, and the liquid outgoing hydrotreating flow; mixing, at least, a part of the named outgoing vaporous hydrotreating flow, at least, with a part of the named outgoing hydrocracking flow for obtaining of a mix; and fractionation, at least, of a part of the named mix. The invention also relates to the device for hydrocarbon hydroprocessing.

EFFECT: offered invention allows to obtain motor (diesel) fuel with low sulphur content.

6 cl, 2 dwg, 1 ex

FIELD: chemistry.

SUBSTANCE: invention relates to a fluidised-bed reactor and a method of catalytic hydrogenation in the reactor. The fluidised-bed reactor comprises a reactor shell, vertical to the ground, a phase separator located within the top part of the shell, an internal circulation zone, located under the phase separator. The internal circulation zone comprises a cylinder, a tapered diffusion section and a guide support. Both the cylinder and the tapered diffusion section at the bottom of the cylinder are located inside the reactor shell, the guide support is fitted on the shell inner wall at the bottom of the tapered diffusion section. The guide support is an annular protrusion of the reactor inner wall.

EFFECT: invention provides effective hydrogenation resulting in a high quality product, and stable operation of the reactor.

26 cl, 2 dwg, 4 tbl, 5 ex

FIELD: oil and gas industry.

SUBSTANCE: invention is related to hydrocarbon oil hydrotreating method using at least the first and second reactors. The method includes (i) contacting of hydrocarbon oil in the first reactor at high temperature and pressure with hydrotreating catalyst in presence of hydrogen-containing gas wherein hydrogen is consumed; (ii) division of the outgoing flow obtained at the stage (i) into partially hydrotreated hydrocarbon oil and contaminated hydrogen-containing gas by means of a steam stripper, wherein the waste hydrogen-containing gas is used as stripping gas; (iii) contacting of partially hydrotreated hydrocarbon oil obtained at the stage (ii) in the second reactor at high temperature and pressure with hydrotreating catalyst in presence of pure hydrogen-containing gas with consumption of this hydrogen, at that at least 80% of hydrogen consumed at the stages (i) and (iii) are replenished by additional pure hydrogen-containing gas supplied to the second reactor; (iv) separation of the product produced at the stage (iii) in the second reactor into hydrotreated hydrocarbon oil and waste hydrogen-containing gas, at that hydrotreated hydrocarbon oil may be extracted as a product, and (v) transporting of at least a part of hydrogen-containing gas obtained at the stage (iv), which has temperature of at least 200°C to perform the stage (ii) while using this gas as stripping gas.

EFFECT: effective usage of waste hydrogen-containing gas promotes minimisation of the required capacity of the compressor, facilitation of steam stripping, improvement of heat usage.

17 cl, 2 dwg

FIELD: process engineering.

SUBSTANCE: proposed process comprises compression of boost hydrogen in first compressor to get first flow of compressed boost hydrogen. First flow of compressed boost hydrogen is compressed in second compressor to get second flow of compressed boost hydrogen. Said second flow of compressed boost hydrogen is separated as second flow of compressed boost hydrogen for hydraulic treatment. First flow of hydrocarbons is processed over first flow for hydraulic processing including second flow of compressed boost hydrogen and first hydraulic processing catalyst to get first effluent flow of hydroprocessing products. Second flow of hydrocarbons is processed over second flow for hydraulic processing including first flow of compressed boost hydrogen and first hydraulic processing catalyst to get second effluent flow of hydroprocessing products. Said second effluent flow of hydroprocessing products is separated to get vaporous second effluent flow of hydroprocessing products. Said vaporous second flow is added to said boost hydrogen flow upstream of said first compressor.

EFFECT: perfected feed of hydrogen to separate process units.

9 cl, 2 dwg

FIELD: process engineering.

SUBSTANCE: invention relates to method of diesel fuel production. Particularly, it pertains to compression of makeup hydrogen flow in compressor to bleed hydrogen flow from said compressed makeup hydrogen flow. Hydrocarbons flow is subjected to hydro cracking in the presence of hydrogen flow and catalyst to get outlet hydro cracking products flow to be separated in liquid flow and vapour flow to be compressed to get hydrogen compressed flow. Liquid outlet flow is fractionated to obtain diesel fuel flow. Hydrogen flow is bled for hydraulic cleaning from said compressed hydrogen flow for hydraulic cleaning of diesel fuel flow in the presence of hydrogen flow and catalyst to get outlet hydro cracking products flow. Invention covers also the diesel fuel production plant.

EFFECT: perfected process.

10 cl, 2 dwg

FIELD: oil and gas industry.

SUBSTANCE: invention is related to hydrocracking processes, under conditions of which large proportion of heavy hydrocarbon stock e.g. Vacuum Gas Oil (VGO) turns to hydrocarbons with lower molecular mass and lower boiling temperature. The invention relates to the method of production of base oil, involving: a) hydrocracking of heavy hydrocarbon stock with hydrocracking catalyst containing the preset amount less than 15 wt % of beta-zeolite with flow coming out of a hydrocracking plant containing at least 40 wt % of hydrocarbons boiling at temperature of 382°C (720°F), and b) separation from flow coming out of a hydrocracking plant of unconverted oil with pour point not above 18°C (65°F) in form of high-boiling fraction containing base oil.

EFFECT: improvement of base oil quality.

11 cl, 1 dwg, 4 tbl, 2 ex

FIELD: oil and gas industry.

SUBSTANCE: invention is related to a combined method of conversion of oil-derived hydrocarbon fractions into high-quality hydrocarbon mixtures as fuel, which includes catalytic cracking of hydrocarbon fraction in catalyst fluidised bed with catalyst containing ERS-10 zeolite, where the specified catalyst contains at least two components, where the specified components represent: (a) a component containing one or more catalytic cracking catalysts in fluidised, and (b) a component containing ERS-10 zeolite for obtaining Light Cycle Gas Oil (LCGO), hydrotreatment of light cycle gas oil, interaction of hydrotreated light cycle gas oil obtained at the previous stage of hydrotreatment in presence of hydrogen with catalytic system. The invention also touches the method of catalytic cracking and a stage of catalytic cracking in fluidised bed.

EFFECT: production of high-quality hydrocarbons, conversion increase.

21 cl, 3 tbl, 1 ex

FIELD: machine building.

SUBSTANCE: invention relates to the hydroconversion method for raw hydrocarbons in the mix with the circulating part of the hydroconversion vacuum residue by a high-aromatic modifier, dispersion of a catalyst precursor and hydrogen-containing gas which is supplied in the amount of maximum 800 nm3 per 1 m3 of raw material in terms of hydrogen and of minimum the value of chemical hydrogen demand. The above is carried out in a reactor with an internal circular baffle plate which adjoins the reactor top in a pressure tight way and forms axial and circular cavities, and with separation space at the top of the circular cavity. Hydroconversion gas is removed from the separation space, liquid hydroconversion product is removed from the top of the axial cavity, circulating reaction mass is removed from the bottom of the reactor's circular cavity, cooled and delivered for mixing with heated raw liquid-vapour mixture, the temperature of the liquid hydroconversion product is kept close to the upper limit of the hydroconversion temperature range, the temperature of the heated raw mixture and the temperature of the circulating reaction mass are kept close to the lower limit of the hydroconversion temperature range. Hydroconversion products are separated and rectified to isolate light fractions, heavy gas oil and vacuum residue, part of the latter is recirculated, and the balance part is recovered to produce regenerated catalyst precursor.

EFFECT: reduction of power inputs and metal consumption of equipment along with the provision for high yield of light fractions.

1 dwg, 1 ex

FIELD: engines and pumps.

SUBSTANCE: invention relates to production of fuel for jet engines from kerosene stock. Proposed method comprises hydrofining of kerosene stock with freezing point interval of 163-302°C (325-575°F) over hydrofining catalyst under conditions of hydrofining. This allows getting hydrofined kerosene stock. Besides, it includes dewaxing of, in fact, all hydrofined kerosene stock over catalyst including 1-D molecular sieve with ten rings under conditions of dewaxing to get water-dewaxed kerosene stock. Also, it includes fractionating of water-dewaxed kerosene stock to get fuel for jet engines.

EFFECT: higher yield, better properties.

10 cl, 1 dwg, 2 tbl, 1 ex

FIELD: chemistry.

SUBSTANCE: method of producing liquid hydrocarbon mixtures is carried out via hydroconversion of lignocellulose biomass in a solvent medium in the presence of a dispersed catalyst precursor. The method includes drying the biomass; grinding the biomass; preparing a paste from the ground biomass, solvent and dispersed catalyst precursor; hydroconversion of the prepared paste; separating the obtained products in a system of separators; the method is characterised by that the solvent used is an organic solvent having viscosity of 0.5-2.5 Pa·s at 60-90°C, which contains 2-5.5 wt % sulphur and 5-25 wt % polycyclic aromatic hydrocarbons and/or derivatives thereof, and grinding of the biomass and preparation of said paste is carried out via dispersion with mechanical activation of the biomass in a solvent medium containing a catalyst precursor, wherein the prepared paste is first heated in an inert atmosphere to temperature of 330-380°C and pressure of 0.2-0.5 MPa until removal of the basic amount of oxygen in the biomass in the form of CO, CO2 and H2O, followed by hydroconversion.

EFFECT: high output of liquid products of hydroconversion of the biomass, higher conversion of the biomass and simpler process.

10 cl, 10 tbl, 2 dwg, 7 ex

FIELD: chemistry.

SUBSTANCE: invention relates to a method of processing tall oil resin. The method of processing tall oil resin, which contains sterol alcohols, and, possibly, wood alcohols of fatty acids and resin acids, the source of which is tall oil, is characterised by the fact that, at least, a part of the fatty acids and resin acids is released from sterol ethers and ethers of wood alcohols and converted into lower alkyl ethers; alkyl ethers, obtained in he said way, are extracted by evaporation from resin, then condensed, with the further hydration of the obtained condensate. The product, obtained by the claimed method and the application of the method for fuel production are also claimed.

EFFECT: application of tall oil resin, which usually represents a waste product, for obtaining fuel or a fuel component.

17 cl, 1 dwg

FIELD: chemistry.

SUBSTANCE: claimed invention relates to a method of obtaining olefins, including a) steam cracking of an ethane-including raw material in the zone of cracking and under conditions of cracking with obtaining a flow discharged from the zone of cracking, which includes, at least, olefins and hydrogen; b) conversion of the oxygenated raw material in the zone of conversion of oxygenate to olefins in the presence of a catalyst with obtaining a flow, consisting of, at least, olefins and hydrogen, discharged from the oxygenate-to-olefins (OTO) flow; c) combination of, at least, a part of the flow, discharged from the zone of cracking and a part of the flow, discharged from the OTO zone with obtaining a combined output flow; and d) separation of hydrogen from the combined output flow, with the formation of, at least, a part of the oxygenated raw material due to the supply of hydrogen, obtained at stage d), and the raw material, containing carbon oxide and/or carbon dioxide, into the zone of oxygenates synthesis and obtaining oxygenates. The invention also relates to a combined system for the claimed method realisation.

EFFECT: claimed invention makes it possible to obtain target products by the improved combined method of ethane cracking and OTO technology.

8 cl, 1 dwg, 5 tbl, 1 ex

FIELD: chemistry.

SUBSTANCE: invention relates to the catalytic conversion of a renewable raw material - products of the biomass fermentation (ethanol, fusel alcohols) and their mixtures with vegetable oil into an alkane-aromatic fraction C3-C11+, which can be used for obtaining fuel components. The method of obtaining alkane and aromatic hydrocarbons from the products of the biomass processing for obtaining the hydrocarbon fuel components includes passing the products of the biomass processing through a layer of a preliminarily regenerated zeolite ZSM-based catalyst, containing Pd and Zn, in an inert atmosphere at an increased temperature. The method is characterised by the fact that as the catalyst used is the Pd-Zn/ZSM/Al2O3 catalyst of the general formula of 0.6 wt % Pd-1 Zn/Al2O3/ZSM, with the products of the biomass processing, which contain a mixture of organic fermentation products or fusel alcohols, being passed through the catalyst layer at a temperature of 280-500°C and volume rate of 0.3-6 h-1.

EFFECT: extension of the raw material base and method for obtaining alkane and aromatic hydrocarbons.

5 cl, 6 tbl, 26 ex

FIELD: chemistry.

SUBSTANCE: described is catalyst for single-stage manufacturing of components for jet and Diesel fuels from oil and fat raw material, containing platinum or palladium, fixed on the surface of porous carrier, represented by borate-containing aluminium oxide, with the following component ratio, wt %: Pt or Pd 0,10-0.50; B2O3 5-25; Al2O3 - the remaining part. Catalyst can be prepared by granulation of mixture of aluminium oxide hydrate of pseudoboehmite structure with orthoboric acid with the following drying of granules at 120°C and annealing at 550-700°C for 16 h. Granules are soaked with solutions of hexachloroplatinic acid or palladium chloride, subjected to drying at 120°C and annealing at 500°C. Method of single-stage manufacturing of components for jet and Diesel fuels with improved low-temperature properties from oil and fat raw material in presence of claimed catalyst includes passing mixture of hydrogen and oil and fat raw material through immobile layer of catalyst at temperature 380°C, pressure 4.0 MPa, mass rate of raw material supply 1 h-1 and with volume ratio hydrogen:raw material, equal 1300.

EFFECT: increased efficiency of single-stage manufacturing of components for jet and Diesel fuels with improved low-temperature properties from oil and fat raw material due to simplification of catalyst composition, method of its preparation and reduction of catalyst cost.

3 cl, 4 tbl, 4 ex

FIELD: chemistry.

SUBSTANCE: invention relates to methods of producing pyrolysis oil. A method of producing biomass-derived pyrolysis oil (38) with low metal content includes steps of: filtering a biomass-derived pyrolysis oil (12) with a high-throughput filter unit (20) having throughput of 10 l/m2/h or higher to form biomass-derived pyrolysis oil (22) with low content of solid substances; filtering the biomass-derived pyrolysis oil (22) with low content of solid substances with a fine filter (28) having a pore diameter of 50 mcm or less to form biomass-derived pyrolysis oil (30) with very low content of solid substances; and contacting the biomass-derived pyrolysis oil (30) with very low content of solid substances with an ion-exchange resin to remove metal ions and form biomass-derived pyrolysis oil (38) with low metal content. A version of the method is also disclosed.

EFFECT: total metal content is reduced to concentration of 100 ppm or less.

10 cl, 1 dwg

FIELD: chemistry.

SUBSTANCE: method includes producing synthesis gas, converting the synthesis gas into methanol, producing a concentrate of aromatic hydrocarbons and water from the methanol in the presence of a catalyst, separating the water, blowing off hydrocarbon residues from the water, separating the formed concentrate of aromatic hydrocarbons and a hydrogen-containing gas, which is at least partially used when producing synthesis gas, to change the ratio H2:CO=1.8-2.3:1 therein. The production of aromatic hydrocarbons from methanol in the presence of a catalyst is carried out in two series-connected aromatic hydrocarbon synthesis reactors - a first low-temperature isothermic aromatic and aliphatic hydrocarbon synthesis reactor and a second high-temperature adiabatic reactor for synthesis of aromatic and aliphatic hydrocarbons from the aliphatic hydrocarbons formed in the first reactor and subsequent stabilisation in a unit for stabilising the concentrate of aromatic hydrocarbons. At least part of the hydrogen-containing gas is fed into a synthesis gas production unit and used to obtain synthesis gas using an autothermal reforming technique with a pre-reforming or non-catalytic partial oxidation unit using oxygen or oxygen-air mixtures as the oxidising agent to change the ratio according to the relationship (m.f.H2-m.f.CO2)/(m.f.CO+m.f.CO2)≥2, where m.f. is the molar fraction of a component in synthesis gas. The invention also relates to an apparatus.

EFFECT: high efficiency of producing concentrates of aromatic hydrocarbons.

12 cl, 2 dwg, 1 ex

FIELD: oil and gas industry.

SUBSTANCE: invention relates to a method for obtaining hydrocarbon products, which involves the following stages: (a) provision of synthesis gas containing hydrogen, carbon monoxide and carbon dioxide; (b) reaction of conversion of synthesis gas to an oxygenate mixture containing methanol and dimethyl ester, in presence of one or more catalysts, which simultaneously catalyse the reaction of conversion of hydrogen and carbon monoxide to oxygenates, at pressure of at least 4 MPa; (c) extraction from stage (b) of an oxygenate mixture containing quantities of methanol, dimethyl ester, carbon dioxide and water together with non-reacted synthesis gas, introduction of the whole amount of the oxygenate mixture without any additional treatment to a stage of catalytic conversion of oxygenates (d); (d) reaction of oxygenate mixture in presence of a catalyst, which is active in conversion of oxygenates to higher hydrocarbons; (e) extraction of the outlet flow from stage (d) and separation of the outlet flow into tail gas containing carbon dioxide occurring from synthesis gas and carbon dioxide formed at stage (b), liquid hydrocarbon phase containing the higher hydrocarbons obtained at stage (d) and liquid water phase where the pressure used at stages (c)-(e) is mainly the same as that used at stage (b); besides, some part of tail gas obtained at stage (e) is recirculated to stage (d), and the rest part of tail gas is discharged.

EFFECT: this method is a method in which there is no recirculation of non-reacted synthesis gas to a synthesis stage of oxygenates and without any cooling of a conversion reaction of dimethyl ester to higher hydrocarbons.

6 cl, 2 ex, 1 tbl, 2 dwg

FIELD: chemistry.

SUBSTANCE: claimed invention relates to liquid fuel compositions. Invention deals with liquid fuel composition, containing, at least, one fuel component and from 0.1%(vil.) to 99.5% (vol.) of fraction of distillation of component, which contains, at least, one C4+ compound, derived from water-soluble oxygenated hydrocarbon. Method includes supply of water and water-soluble oxygenated hydrocarbon, including C1+O1+ hydrocarbon, in water liquid phase and/or vapour phase; supply of H2; carrying out catalytic reaction in liquid and/or vapour phase between oxygenated hydrocarbon and H2 in presence of deoxygenation catalyst at temperature of deoxygenation and pressure of deoxygenation to obtain oxygenate, which contains C1+O1-3 hydrocarbon in reaction flow; and carrying put catalytic reaction in liquid and/or vapour phase for oxygenate in presence of condensation catalyst at temperature of condensation and pressure of condensation to obtain C4+ compound, where C4+ compound includes representative, selected from the group, consisting of C4+ alcohol, C4+ ketone, C4+ alkane, C4+ alkene, C5+ cycloalkane, C5+ cycloalkene, aryl, condensed aryl and their mixture. Invention also relates to petrol composition, Diesel fuel composition, kerosene composition and methods of obtaining thereof.

EFFECT: improved characteristics of fuel composition, containing component, obtained from biomass.

9 cl, 19 dwg, 14 tbl, 59 ex

FIELD: chemistry.

SUBSTANCE: method includes stage of contact of pyrolysis oil, produced from biomass, with first catalyst of oxygen removal in presence of hydrogen under first, preliminarily set conditions of hydropurification with formation of first effluent stream of pyrolysis oil with low oxygen content. First catalyst of oxygen removal contains neutral catalytic carrier, nickel, cobalt and molybdenum. First catalyst of oxygen removal contains nickel in quantity from 0.1 to 1.5 wt % in terms of oxide. Version of method is also claimed.

EFFECT: extension of assortment of oxygen removal methods.

10 cl, 1 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to a method of processing acid sludge, wherein sulphuric acid is removed by mixing the acid sludge with distilled water in ratio of 1:6 by volume at 20°C and atmospheric pressure and mixing the aqueous solution of the acid sludge with aqueous ammonia solution in ratio of 7:1.9 by volume.

EFFECT: lower power consumption during neutralisation, low consumption of auxiliary materials and number of process operations.

1 dwg, 1 tbl

Up!