Method of producing nanocapsules of adenine in carrageenan

FIELD: nanotechnology.

SUBSTANCE: invention relates to a method of producing nanocapsules of adenine. Specified method is characterized by that carrageenan in benzene is added with glycerol ester with one or two molecules of edible fatty acids and one or two molecules of citric acid as a surfactant, the produced mixture is stirred, added with adenine powder, after formation of an independent solid phase is slowly added with petroleum ether, the produced suspension of nanocapsules is filtered, washed with petroleum ether and dried, herewith the ratio of nucleus/shell in the nanocapsules makes 1:3, 1:1 or 5:1.

EFFECT: invention provides faster and easier process of nanoencapsulation of adenine, as well as higher mass output.

1 cl, 1 dwg, 4 ex

 



 

Same patents:

FIELD: chemistry.

SUBSTANCE: first step includes obtaining low-hydroxylated insoluble fullerenols by reacting concentrated fullerene solution in o-xylene with aqueous ammonia solution in the presence of a tetrabutylammonium hydroxide phase-transfer catalyst at 35-40C. At the second step, the obtained low-hydroxylated insoluble fullerenols are hydroxylated to transform them into a water-soluble form by mixing with 6-15% aqueous hydrogen peroxide solution and heating for 4-5 hours at 65C. Water-soluble fullerenols are then precipitated from an alcohol-containing solution.

EFFECT: simplifying the method while preserving quality characteristics and full extraction of the end product.

2 cl, 1 dwg, 4 tbl, 3 ex

FIELD: chemistry.

SUBSTANCE: invention relates to nanotechnology, particularly a method of producing aspirin nanocapsules in a carrageenan envelope. The disclosed method includes preparing an aspirin suspension in benzene; dispersing the obtained mixture into a carrageenan suspension in butanol in the presence of an E472c preparation while mixing at 1000 rps; adding tetrachloromethane; filtering the obtained nanocapsule suspension and drying at room temperature.

EFFECT: method provides a simpler and faster process of producing nanocapsules and increases mass output.

1 dwg, 4 ex

FIELD: chemistry.

SUBSTANCE: invention relates to encapsulation, particularly to a method of producing albendazole nanocapsules in a sodium alginate envelope. The disclosed method includes adding albendazole to a sodium alginate suspension in hexane in the presence of an E472c preparation while mixing at 1000 rps. The weight ratio of albendazole and sodium alginate is 1:3 or 3:1. Further, 1,2-dichloroethane is added. The obtained suspension of nanocapsules is filtered, washed and dried. The process of producing the nanocapsules is carried out at 25C for 20 minutes.

EFFECT: invention provides a simpler and faster process of producing nanocapsules, reduces losses during production thereof (high mass output).

3 ex, 1 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to encapsulation, particularly a method of producing resveratrol nanocapsules in an envelope made of low- or highly esterified apple or citrus pectin. According to the disclosed method, resveratrol is dispersed in a suspension of low- or highly esterified apple or citrus pectin in benzene in the presence of an E472c preparation while stirring at 1000 rps. Tetrachloromethane is then added. The obtained suspension of nanocapsules is filtered and dried. The process of producing the nanocapsules is carried out at 25C for 10 minutes.

EFFECT: invention provides a simpler and faster process of producing nanocapsules, reduces losses during production thereof (high mass output).

9 ex, 1 dwg

FIELD: nanotechnology.

SUBSTANCE: according to the invention method, albendazole is added to the suspension of sodium alginate in butanol in the presence of the preparation E472s when stirring at 1000 revolutions per second. The mass ratio of albendazole and sodium alginate is 1:3 or 3:1. Then acetonitrile is added. The resulting suspension of the nanocapsules is filtered, washed, and dried. The process of production of nanocapsules is carried out at 25C for 20 min.

EFFECT: simplification and acceleration of the process of production of nanocapsules, reduction of losses in their production.

1 dwg, 2 ex

FIELD: chemistry.

SUBSTANCE: according to the method a suspension of resveratrol in heptane was dispersed into a suspension of xanthan gum in butanol in the presence of E472c under stirring at the rate of 1000 rev/s. A mixture of benzene and water taken at a volume ratio of 5:1 or 3:1 was added to the said suspension. The resulted suspension of nanocapsules was filtered, washed and dried. The process was performed at a temperature of 25C within 10 min.

EFFECT: simplified and fast process of nanocapsule production, reduced process losses.

4 ex, 2 dwg

FIELD: nanotechnology.

SUBSTANCE: suspension of aspirin in benzene is produced. The resulting mixture is dispersed into suspension of sodium alginate in butanol in the presence of the preparation E472s when stirring at 1000 rpm/sec. Then chloroform is poured, the resulting suspension of nanocapsules is filtered and dried at room temperature.

EFFECT: simplification and acceleration of the process of production of the nanocapsules, and increase in the yield by weight.

1 dwg, 4 ex

FIELD: medicine.

SUBSTANCE: invention represents a method for preparing a sterile nanoemulsion of perfluororganic compounds (PFOC) involving: adding a PFOC mixture to an aqueous solution of a stabilising agent; homogenising the PFOC mixture with the aqueous solution of the stabilising agent to produce a PFOC pre-emulsion; mixing the PFOC pre-emulsion with a salt-water solution to produce the PFOC nanoemulsion; keeping the PFOC nanoemulsion at a temperature from 2 to 10C for at least 18 hours. The method can be also implemented as follows: pre-filling a circulation loop of a PFOC nanoemulsion generating plant with the aqueous solution of the stabilising agent; adding the PFOC mixture to the aqueous solution of the stabilising agent; homogenising the PFOC mixture with the aqueous solution of the stabilising agent to produce the PFOC pre-emulsion; mixing the PFOC pre-emulsion with the salt-water solution to produce the PFOC nanoemulsion.

EFFECT: higher stability of the PFOC emulsion and prolonging the storage life.

30 cl, 7 ex, 5 tbl, 1 dwg

FIELD: nanotechnology.

SUBSTANCE: shell of the nanocapsules is used as apple or citrus high- or low-esterified pectin, and the core - as L-arginine. According to the inventive method, L-arginine is suspended in benzene, the resulting mixture is dispersed into a suspension of apple or citrus high- or low-esterified pectin in benzene in the presence of the preparation E472s while stirring 1000 revolutions per second. Then carbon tetrachloride is added, the resulting suspension of the nanocapsules is filtered and dried at room temperature. The process is carried out for 15 minutes.

EFFECT: simplification and acceleration of the process of producing the nanocapsules, and increase in the yield by weight.

6 ex

FIELD: nanotechnology.

SUBSTANCE: method of production of nanocapsules of vitamin in sodium alginate is characterized in that the shell is used as sodium alginate, and the core - as the vitamin, in a weight ratio of core:shell as 1:3. According to the method of preparing the nanocapsules the vitamin is added to a suspension of sodium alginate in benzene in the presence of the preparation E472s while stirring at 1300 rev/sec. Then hexane is added, the resulting suspension is filtered and dried at room temperature.

EFFECT: simplification and acceleration of the process of production of the nanocapsules, and increase in the yield by weight.

3 dwg, 8 ex

FIELD: chemistry.

SUBSTANCE: invention relates to nanotechnology, particularly a method of producing aspirin nanocapsules in a carrageenan envelope. The disclosed method includes preparing an aspirin suspension in benzene; dispersing the obtained mixture into a carrageenan suspension in butanol in the presence of an E472c preparation while mixing at 1000 rps; adding tetrachloromethane; filtering the obtained nanocapsule suspension and drying at room temperature.

EFFECT: method provides a simpler and faster process of producing nanocapsules and increases mass output.

1 dwg, 4 ex

FIELD: chemistry.

SUBSTANCE: invention relates to encapsulation, particularly to a method of producing albendazole nanocapsules in a sodium alginate envelope. The disclosed method includes adding albendazole to a sodium alginate suspension in hexane in the presence of an E472c preparation while mixing at 1000 rps. The weight ratio of albendazole and sodium alginate is 1:3 or 3:1. Further, 1,2-dichloroethane is added. The obtained suspension of nanocapsules is filtered, washed and dried. The process of producing the nanocapsules is carried out at 25C for 20 minutes.

EFFECT: invention provides a simpler and faster process of producing nanocapsules, reduces losses during production thereof (high mass output).

3 ex, 1 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to encapsulation, particularly a method of producing resveratrol nanocapsules in an envelope made of low- or highly esterified apple or citrus pectin. According to the disclosed method, resveratrol is dispersed in a suspension of low- or highly esterified apple or citrus pectin in benzene in the presence of an E472c preparation while stirring at 1000 rps. Tetrachloromethane is then added. The obtained suspension of nanocapsules is filtered and dried. The process of producing the nanocapsules is carried out at 25C for 10 minutes.

EFFECT: invention provides a simpler and faster process of producing nanocapsules, reduces losses during production thereof (high mass output).

9 ex, 1 dwg

FIELD: medicine.

SUBSTANCE: invention refers to medicine and describes a method for producing glucosamine sulphate nanocapsules by non-solvent addition, wherein glucosamine sulphate is added in small amounts to a carrageenan suspension used as a nanocapsule shell in butanol, containing E472c preparation 0.01 g as a surfactant; the produced mixture is agitated and added with the non-solvent hexane 6 ml, filtered, washed in hexane and dried.

EFFECT: invention provides simplifying and accelerating the process of nanoencapsulation in carrageenan and higher weight yield.

2 ex

FIELD: nanotechnology.

SUBSTANCE: according to the invention method, albendazole is added to the suspension of sodium alginate in butanol in the presence of the preparation E472s when stirring at 1000 revolutions per second. The mass ratio of albendazole and sodium alginate is 1:3 or 3:1. Then acetonitrile is added. The resulting suspension of the nanocapsules is filtered, washed, and dried. The process of production of nanocapsules is carried out at 25C for 20 min.

EFFECT: simplification and acceleration of the process of production of nanocapsules, reduction of losses in their production.

1 dwg, 2 ex

FIELD: chemistry.

SUBSTANCE: according to the method a suspension of resveratrol in heptane was dispersed into a suspension of xanthan gum in butanol in the presence of E472c under stirring at the rate of 1000 rev/s. A mixture of benzene and water taken at a volume ratio of 5:1 or 3:1 was added to the said suspension. The resulted suspension of nanocapsules was filtered, washed and dried. The process was performed at a temperature of 25C within 10 min.

EFFECT: simplified and fast process of nanocapsule production, reduced process losses.

4 ex, 2 dwg

FIELD: nanotechnology.

SUBSTANCE: suspension of aspirin in benzene is produced. The resulting mixture is dispersed into suspension of sodium alginate in butanol in the presence of the preparation E472s when stirring at 1000 rpm/sec. Then chloroform is poured, the resulting suspension of nanocapsules is filtered and dried at room temperature.

EFFECT: simplification and acceleration of the process of production of the nanocapsules, and increase in the yield by weight.

1 dwg, 4 ex

FIELD: nanotechnology.

SUBSTANCE: shell of the nanocapsules is used as apple or citrus high- or low-esterified pectin, and the core - as L-arginine. According to the inventive method, L-arginine is suspended in benzene, the resulting mixture is dispersed into a suspension of apple or citrus high- or low-esterified pectin in benzene in the presence of the preparation E472s while stirring 1000 revolutions per second. Then carbon tetrachloride is added, the resulting suspension of the nanocapsules is filtered and dried at room temperature. The process is carried out for 15 minutes.

EFFECT: simplification and acceleration of the process of producing the nanocapsules, and increase in the yield by weight.

6 ex

FIELD: nanotechnology.

SUBSTANCE: method of production of nanocapsules of vitamin in sodium alginate is characterized in that the shell is used as sodium alginate, and the core - as the vitamin, in a weight ratio of core:shell as 1:3. According to the method of preparing the nanocapsules the vitamin is added to a suspension of sodium alginate in benzene in the presence of the preparation E472s while stirring at 1300 rev/sec. Then hexane is added, the resulting suspension is filtered and dried at room temperature.

EFFECT: simplification and acceleration of the process of production of the nanocapsules, and increase in the yield by weight.

3 dwg, 8 ex

FIELD: chemistry.

SUBSTANCE: invention relates to method of obtaining L-arginine nanocapsules in sodium alginate envelope. In the process of method realisation L-arginine is suspended in benzene. Obtained mixture is dispersed into suspension of sodium alginate in hexane in presence of preparation E472c with mixing at 1000 rev/sec. After that, chloroform is added, and obtained suspension of nanocapsules is filtered and dried at room temperature. Process is realised for 15 minutes.

EFFECT: method in accordance with invention provides simplification and acceleration of process of obtaining nanocapsules and increased output by weight.

3 ex

FIELD: chemistry.

SUBSTANCE: invention relates to nanotechnology, particularly a method of producing aspirin nanocapsules in a carrageenan envelope. The disclosed method includes preparing an aspirin suspension in benzene; dispersing the obtained mixture into a carrageenan suspension in butanol in the presence of an E472c preparation while mixing at 1000 rps; adding tetrachloromethane; filtering the obtained nanocapsule suspension and drying at room temperature.

EFFECT: method provides a simpler and faster process of producing nanocapsules and increases mass output.

1 dwg, 4 ex

Up!