Method for preparation of 3,3-dimethylbutyraldehyde

FIELD: chemistry.

SUBSTANCE: invention relates to a method of producing 3.3-dimethylbutyraldehyde, which is used as intermediate compound for producing of sweetener. Method consists in fact that with preliminary cooled dichloromethane one sequentially mixes in tank tert-butyl chloride and vinyl acetate to produce mixture which is held for catalytic reaction in presence of catalyst introduced into mixture, adding deionised water and stirring, after which organic phase is separated and washed with sodium carbonate solution, and then separated from dichloromethane organic phase, drying, condensation and recovery of dichloromethane followed by distillation of organic phase in vacuum and collected fraction of 1-chloro-3.3-dimethylbutylacetate acid is added to it, and obtained mixture is heated to 100 C-110 C for hydrolytic disproportionation in presence of catalyst to obtain a mixture containing 3.3-dimethylbutyraldehyde and subsequent purification of mixture by distillation to obtain purified 3.3-dimethylbutyraldehyde.

EFFECT: proposed method allows to produce end product with purity higher than 99, 7 %, and output of 95 % by controlled two-stage reaction using readily available material.

10 cl, 1 dwg, 3 ex

 



 

Same patents:

FIELD: chemistry.

SUBSTANCE: installation comprises: sources of synthesis-gas and olefins, connected to reactor via purification devices, successively connected by means of pipelines with reactor input gas-liquid separator and evaporator, collector of bottom residue of which is connected with reverse pipeline of liquid recycle, with output of aldehydes from evaporator being collected with rectification column via collector-separator, as well as unit for discharge of waste catalyst and heavy reaction products. Installation is provided with sensor of liquid level, installed in collector of bottom residue; device for preparation of fresh catalyst solution, connected with reverse pipeline of liquid recycle and made in form of mixer with dosing device of catalyst components, with unit for discharge of waste catalyst and heavy reaction products being made in from of successively connected pump with device of its switching on and off, meter of liquid flow, device for distilling aldehydes from waste catalyst solution and connected with meter of liquid flow and dosing device of catalyst components of actuator, with output for aldehydes from device for their distillation from waste catalyst solution being connected with mixer of device for preparation of fresh catalyst solution, and sensor of liquid level is located with device of pump switching on and off.

EFFECT: realisation of hydroformylation on claimed installation makes it possible to provide constant optimal quantity of heavy reaction products, optimal composition and quantity of catalyst solution.

1 dwg, 1 ex

FIELD: chemistry.

SUBSTANCE: invention relates to method of regulating hydroformylation process for obtaining aldehydes of normal structure (N) and iso-structure (I) with ratio N:I. Claimed method includes contact of unsaturated olefin compound with synthesis-gas and catalyst, which contains transition metal and organopolyphosphite and organomonophosphite ligand, with contact being carried out in conditions of hydroformylation, including partial pressure of synthesis-gas, where method includes increase of partial pressure of synthesis-gas to reduce ratio N:I or reduction of partial pressure of synthesis-gas to increase ratio N:I.

EFFECT: obtaining aldehydes of normal structure (N) and iso-structure (I) with ratio N to I.

10 cl, 1 ex

FIELD: chemistry.

SUBSTANCE: invention relates to method of hydroformylation and can be used in chemical industry. Claimed is method of hydroformylation for obtaining aldehyde product, including interaction in mode of continuous reaction in liquid phase for hydroformylation of unsaturated olefin compounds, carbon monoxide and hydrogen in presence of mixture of triphenylphosphine and organo-bisphosphite ligand of formula , where R1 and R2 represent monovalent aryl radical, containing from 6 to 40 carbon atoms, R28 represents C1-20-alkyl or cycloalkyl radical or alkoxyradical; and R29 can represent hydrogen atom, C1-20-alkyl or cycloalkyl radical or alkoxyradical. One of said ligands binds with rhodium with formation of hydroformylation catalyst, with molar ratio of triphenyl to metal and organo-bisphosphite ligand to metal constituting at least 4.

EFFECT: presence of organomonophosphite in said system of catalysts based on Rh/organopolyphosphite complex results in catalysts stabilisation without loss of reaction rate.

10 cl, 5 ex, 2 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to regioselective obtaining of n-pentanal, which is used for obtaining plasticisers, additives to motor oils, synthetic lubricating materials. The method is realised in a medium of an aldehyde-containing solvent by the interaction of synthesis-gas with an industrial butane-butene fraction in the presence of a catalytic system, containing rhodium and a diphosphite ligand, with the reaction being carried out with the content of the aldehyde in the solvent not less than 10 wt %, at temperatures 80-110C, total pressure 0.7-3 MPa, synthesis-gas pressure 0.5-2.5 MPa, with a molar ratio of hydrogen to carbon oxide being in the range 5.0-0.5, molar ratio diphosphite/Rh being in the range 3-15, and rhodium concentration constituting 30-300 ppm, and the addition into a reaction mixture of antioxidants, selected from bisphenols of general formulas: the content of which constitutes 10-40 mol per 1 g-at. rhodium, where R stands for hydrocarbon univalent radicals or hydrogen.

EFFECT: elaboration of a method of regioselective obtaining of n-pentanal.

1 tbl, 26 ex

FIELD: chemistry.

SUBSTANCE: invention relates to a novel acyclic aldehyde having 16 carbon atoms, containing at least three branches and selected from a group consisting of: 3-ethyl-7,11-dimethyldodecanal, 2,3,7,11-tetramethyl-dodecanal, 7,11,-dimethyl-3-vinyldodeca-6,10-dienal and 4,8,12-dimethyltrideca-4,7,11-trienal, to a composition of substances suitable for use as starting material for producing surfactants and containing at least one of the disclosed acyclic aldehydes, to a composition of detergent alcohols, suitable for producing a composition of surfactants and containing at least one acyclic alcohol converted from the disclosed acyclic aldehyde, and to a surfactant composition suitable for use in a detergent or cleaning composition and containing one or more surfactant derivatives of isomers of the acyclic detergent alcohol converted from the disclosed acyclic aldehyde. The invention also relates to versions of a cleaning composition and to versions of a method of producing an alcohol mixture for a composition of detergent alcohols.

EFFECT: improved properties of compounds.

19 cl, 10 tbl, 24 ex

FIELD: chemistry.

SUBSTANCE: invention relates to a method of producing aldehydes via hydroformylation of terminal or internal olefins in the presence of a catalyst system containing rhodium and a mono- or polyphosphite ligand. An antioxidant is added to the reaction mixture, the antioxidant being phenols or thioureas of general formulae: where R denotes identical or different aliphatic or aromatic univalent radicals or hydrogen, and hydroformylation is carried out in liquid phase in a solvent medium in form of aldehyde, with rhodium concentration of 0.1-2 mmol/l, at temperature of 20-150C and pressure of 0.2-5 MPa, wherein the amount of the antioxidant is 1-30 mol/mol phosphite ligand.

EFFECT: invention enables to obtain end products using an efficient method at low raw material costs.

2 tbl, 15 ex

FIELD: chemistry.

SUBSTANCE: present invention relates to a method of processing a hydroformylation reaction liquid product which contains an aldehyde, high-boiling hydroformylation reaction by-products, a homogeneously dissolved rhodium complex catalyst, an unreacted olefinically unsaturated compound, synthesis gas and volatile by-products, in which a) the liquid stream after hydroformylation is throttled in an expansion tank, wherein there is separation into a liquid phase and a gas phase, b) the liquid phase obtained in the expansion tank is fed into a separation device in which there is separation into a liquid phase, which mainly contains high-boiling hydroformylation reaction by-products, a homogeneously dissolved rhodium complex catalyst and a small amount of aldehyde, and a gas phase which contains the bulk of the aldehyde, and c) a liquid rhodium-containing stream is collected from the separation device. A portion of the liquid rhodium-containing output stream collected from the separation device is removed from the process and the other portion is passed through a filter, and the separated solid substances are removed from the process while the obtained filtrate is returned to the hydroformylation reaction.

EFFECT: method enables to prevent breakdown and/or deactivation of the hydroformylation catalyst.

13 cl, 1 ex, 1 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to a method for direct conversion of lower C1-C4 paraffins to oxygenates such as alcohols and aldehydes, which are valuable intermediate products of organic synthesis and can be used as components of engine fuel and/or starting material for producing synthetic gasoline and other engine fuels. The method involves passing a mixture consisting of a lower paraffin or oxygen, diluted with an inert gas or air or pure oxygen, through a catalyst bed at temperature not higher than 350C. The catalyst used is a catalyst system for heterogeneous reactions, which contains microfibre of a high-silica support and at least one active element, the active element being in form of either a MeOxHalv composite or a EwMezOxHaly composite, wherein the element Me in both composites is selected from a group which includes transition metals of groups 5-12 and periods 4 and 5, or elements of lanthanum or lanthanide groups or, preferably, ruthenium; element Hal is one of the halogens: fluorine, chlorine, bromine, iodine, but preferably chlorine; element E in the EwMezOxHaly composite is selected from a group which includes alkali, alkali-earth elements, or hydrogen, and indices w, z, x and y are weight fractions of elements in given composites and can vary in the following ranges: z - from 0.12 to 0.80, x - from 0.013 to 0.34, y - from 0.14 to 0.74, w - from 0 to 0.50.

EFFECT: method enables to achieve high degree of conversion of starting reactants and high selectivity of formation of alcohols.

4 cl, 15 ex

FIELD: chemistry.

SUBSTANCE: present invention relates to a continuous hydroformylation process for producing a mixture of aldehydes with improved control over normal/branched (N/I) isomer ratio of the product aldehydes. The method involves contacting under continuous reaction conditions in a hydroformylation reaction fluid, one or more olefin compounds, carbon monoxide and hydrogen in the presence of a mixture of an organopolyphosphite ligand and an organomonophosphite ligand, at least one of said ligands being bonded to a transition metal to form a hydroformylation catalyst containing a transition metal-ligand complex; the organopolyphosphite ligand comprising a plurality of phosphorus (III) atoms each bonded to three hydrocarbyloxy radicals, any non-bridging species of which consists essentially of an aryloxy radical (substituted or unsubstituted); the contacting is further conducted: (a) at a sub-stoichiometric molar ratio of organopolyphosphite ligand to transition metal such that said molar ratio is greater than 0 but less than 1.0/1; (b) at a super-stoichiometric molar ratio of organomonophosphite ligand to transition metal such that said molar ratio is greater than 2/1; (c) at a carbon monoxide partial pressure in a negative order region of a hydroformylation rate curve wherein rate of reaction decreases as carbon monoxide partial pressure increases, and wherein rate of reaction increases as carbon monoxide partial pressure decreases, the rate curve being measured on an identical hydroformylation process in the presence of the organopolyphosphite ligand but not the organomonophosphite ligand; and (d) with varying the molar ratio of organopolyphosphite ligand to transition metal within the aforementioned sub-stoichiometric range while maintaining the molar ratio of organomonophosphite ligand to transition metal in the aforementioned super-stoichiometric range, so as to control continuously the normal/branched isomer ratio of the aldehyde products.

EFFECT: providing a continuous production of a mixture of aldehydes with improved control over normal/branched (N/I) isomer ratio of the aldehyde products.

21 cl, 3 ex, 4 tbl, 2 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to a carbonylation method in which at least one compound olefinically unsaturated compound reacts with carbon monoxide in the presence of a complex catalyst of a metal of subgroup VIII of the periodic table of elements, containing an organophosphorus compound as a ligand, where the additional reagent used is at least hydrogen and hydroformylation is carried out. Carbonylation is carried out in the presence of at least one sterically hindered secondary amine with 2,2,6,6-tetramethylpiperidine , units. The invention also relates to a mixture for use in the disclosed carbonylation method.

EFFECT: invention enables to obtain desired products with high selectivity using a stable catalyst system.

18 cl, 4 tbl, 2 ex

FIELD: organic chemistry.

SUBSTANCE: invention relates to method for production of fluorinated ketone of general formula 5 . Claimed method includes reaction of compound of formula 3 , containing at least 30 wt.% of fluorine with fluorine in liquid phase, containing solvent selected from group comprising perfluoroalkane, perfluorinated ester, perfluorinated polyether, chlorofuorohydrocarbon, chlorofluoropolyether, perfluoroalkylamine, inert liquid, compound of formula 2 , compound of formula 6 to produce compound of formula 4 , followed by dissociation of ester bond in formula 4 in presence of KF, NaF or activated carbon without solvent. In formulae: RA represents, optionally containing ether-forming oxygen atom, wherein each of said groups contains C1-C10 carbon atoms; RAF represents C1-C10-perfluorenated RA group; RB represents alkyl optionally containing ether-forming oxygen atom, partially halogenated alkyl, optionally containing ether-forming oxygen atom, wherein each of said groups contains C1-C10 carbon atoms; RBF represents C1-C10-perfluorenated RB group; RC and RCF groups are identical ones and each RC and RCF contains C2-C10 carbon atoms and represents perfluorenated alkyl optionally containing ether-forming oxygen atom, partially halogenated alkyl, optionally containing ether-forming oxygen atom or RA and RB together form alkylene group optionally containing ether-forming oxygen atom, partially halogenated alkylene, optionally containing ether-forming oxygen atom, wherein each abovementioned group contains C3-C6 carbon atoms; each RAF and RBF are perflurenated RA and RB groups containing C3-C6 carbon atoms; groups are identical ones and each RC and RCF contains C2-C10 carbon atoms and represents perfluorenated alkyl optionally containing ether-forming oxygen atom, partially halogenated alkyl, optionally containing ether-forming oxygen atom. Method of present invention provides fluorinated ketone production with 71-96 % yield. Some intermediates of formula 3 also are described.

EFFECT: method for fluorinated ketone production with increased yield.

10 cl, 5 ex

The invention relates to a method for producing aryl-substituted acetylization-1,3 formula

< / BR>
where R= H, Cl, C2H5CH(CH3)2interacting 1,1-diarylethene with dimethylphthalate using xylene in the presence of sodium alcoholate in methanol, which is gradually metered to the original reactants at a temperature of 100-120oWith simultaneous distillation of the mixture of alcohols and xylene, and the process is carried out at a molar ratio of 1,1-dearylation:sodium alcoholate, which is 1: 1,1-1,5, at a temperature 110-128oWith

FIELD: organic chemistry.

SUBSTANCE: invention relates to method for production of fluorinated ketone of general formula 5 . Claimed method includes reaction of compound of formula 3 , containing at least 30 wt.% of fluorine with fluorine in liquid phase, containing solvent selected from group comprising perfluoroalkane, perfluorinated ester, perfluorinated polyether, chlorofuorohydrocarbon, chlorofluoropolyether, perfluoroalkylamine, inert liquid, compound of formula 2 , compound of formula 6 to produce compound of formula 4 , followed by dissociation of ester bond in formula 4 in presence of KF, NaF or activated carbon without solvent. In formulae: RA represents, optionally containing ether-forming oxygen atom, wherein each of said groups contains C1-C10 carbon atoms; RAF represents C1-C10-perfluorenated RA group; RB represents alkyl optionally containing ether-forming oxygen atom, partially halogenated alkyl, optionally containing ether-forming oxygen atom, wherein each of said groups contains C1-C10 carbon atoms; RBF represents C1-C10-perfluorenated RB group; RC and RCF groups are identical ones and each RC and RCF contains C2-C10 carbon atoms and represents perfluorenated alkyl optionally containing ether-forming oxygen atom, partially halogenated alkyl, optionally containing ether-forming oxygen atom or RA and RB together form alkylene group optionally containing ether-forming oxygen atom, partially halogenated alkylene, optionally containing ether-forming oxygen atom, wherein each abovementioned group contains C3-C6 carbon atoms; each RAF and RBF are perflurenated RA and RB groups containing C3-C6 carbon atoms; groups are identical ones and each RC and RCF contains C2-C10 carbon atoms and represents perfluorenated alkyl optionally containing ether-forming oxygen atom, partially halogenated alkyl, optionally containing ether-forming oxygen atom. Method of present invention provides fluorinated ketone production with 71-96 % yield. Some intermediates of formula 3 also are described.

EFFECT: method for fluorinated ketone production with increased yield.

10 cl, 5 ex

FIELD: chemistry.

SUBSTANCE: invention relates to a method of producing 3.3-dimethylbutyraldehyde, which is used as intermediate compound for producing of sweetener. Method consists in fact that with preliminary cooled dichloromethane one sequentially mixes in tank tert-butyl chloride and vinyl acetate to produce mixture which is held for catalytic reaction in presence of catalyst introduced into mixture, adding deionised water and stirring, after which organic phase is separated and washed with sodium carbonate solution, and then separated from dichloromethane organic phase, drying, condensation and recovery of dichloromethane followed by distillation of organic phase in vacuum and collected fraction of 1-chloro-3.3-dimethylbutylacetate acid is added to it, and obtained mixture is heated to 100 C-110 C for hydrolytic disproportionation in presence of catalyst to obtain a mixture containing 3.3-dimethylbutyraldehyde and subsequent purification of mixture by distillation to obtain purified 3.3-dimethylbutyraldehyde.

EFFECT: proposed method allows to produce end product with purity higher than 99, 7 %, and output of 95 % by controlled two-stage reaction using readily available material.

10 cl, 1 dwg, 3 ex

FIELD: chemistry.

SUBSTANCE: method for alkoxyphenol production comprises O-alkylation of at least one hydroxyphenol to form at least one alkoxyphenol, at that, the said reaction is carried out using an O-alkylating agent, an aqueous solvent containing a Bronsted base and an organic solvent with a base/O-alkylating agent ration in the range of 0.5 to 1.5 moles of base per mole of O-alkylating agent, with an O-alkylating agent/hydroxyphenol ratio in the range of 0.5 to 2 moles of O-alkylating agent per mole of hydroxyphenol and with an organic solvent/hydroxyphenol ratio of less than 280 ml, preferably in the range of 10 to 250 ml and more preferably in the range of 50 to 150 ml of an organic solvent per mole of hydroxyphenol. One of the versions of the alkoxyhydroxybenzaldehyde production method comprises preparation of alkoxyphenol from hydroxyphenol by the foregoing method and a reaction of the aldehyde group addition to the resulting alkoxyphenol to obtain the corresponding alkoxyhydroxybenzaldehyde, preferably by condensation reaction between alkoxyphenol and glyoxylic acid, followed by oxidation of the resulting compound.

EFFECT: proposed method for alkoxyphenol production allows the desired product to be obtained in good yield and high purity with high conversion of initial hydroxyphenol.

11 cl, 3 dwg, 7 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: technology for separation of hydroformylation products by naphthenate-evaporating schedule of oxo-synthesis. Separation of propylene hydroformylation products after its decolbatization is carried out by a single evaporation under atmosphere pressure with separation of distillate - fraction of butyric aldehydes from the vat residue - cobalt salts solution in high-boiling by-side products. Indicated evaporation with separation of vapor phase from liquid phase is carried out in separator device under atmosphere pressure, at temperature of liquid phase 90-115°C or 130-170°C with reinforced circulation of liquid phase through boiler at the circulation ratio = (3-30):1. Then the successive additional extraction aldehydes and alcohols from the vat residue are carried out by a single evaporation under vacuum. Method provides reducing loss of cobalt catalyst at the stage for separating products of oxidative decolbatization, and improved economic indices.

EFFECT: improved method for separating.

9 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to the improved method for preparing concentrate of butyric aldehydes by oxonation. Method is carried out by the hydroformylation reaction of propylene with synthesis-gas in two in-line connected reactors at temperature 120-150°C, under pressure 250-300 kgf/cm2 and with heat removing by circulation of cooling agent through Field's tubes installed in hydroformylation reactors followed by separation of reaction products. The hydroformylation process in the first reactor is carried out in regimen when the ratio of volume consumptions of cooling agent circulating in Field's tubes and propylene feeding into reactor is (18-28):1. Invention provides enhancing yield of end products, improving energetic indices due to effective heat transfer in the hydroformylation reactor.

EFFECT: improved preparing method.

1 tbl, 4 ex

FIELD: chemical technology.

SUBSTANCE: invention describes a method for realization of the multiphase reaction of hydroformylation of olefins in tube reactor wherein a catalyst is in the continuum liquid phase and at least one the parent product is in the dispersed phase. The hydroformylation reaction is carried out at the loading coefficient B 0.8 or above that is calculated as a quotient from the pressure fall PD length value and the static pressure PS value wherein PD = Cw x g/2 x w2/D and PS = (M/V) x g wherein Cw means a tube reactor resistance coefficient; D means diameter of tube reactor; W means a flow rate moving; S means a density value of flowing phase; M means a weight flow of all components in reactor; V means a volume flow; g = 9.81 m/c2.

EFFECT: improved method, enhanced output of process.

11 cl, 1 dwg, 9 ex

FIELD: organic chemistry, in particular production of carbonyl compounds such as aldehydes and ketones.

SUBSTANCE: claimed method includes reaction of nitrous oxide with alkenes in presence of inert gas as diluent. Reaction is carried out in gas phase at 401-700°C and under pressure of 2-300 atm. Target compounds represent value intermediates for precise and base organic synthesis.

EFFECT: method of high selectivity in relation to target products and improved explosion proofing.

5 cl, 1 tbl, 14 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to the hydroformylation process of olefins with using rhodium catalyst for preparing aldehydes comprising 3-21 carbon atoms. Reaction products from the hydroformylation reactor are separated for: (a) gaseous and liquid phase; (b) liquid phase is fractionated for a head fraction containing unreacted olefins and aldehydes and a vat fraction containing by-side products and rhodium catalyst, and (c) the vat fraction is cooled to temperature lower than the hydroformylation point into reactor, preferably, to 10-120°C. Then the vat fraction is saturated with carbon monoxide-containing gas under partial pressure of carbon monoxide 0.1-300 bars. The vat fraction containing catalyst and carbon monoxide are recovered completely or partially into the hydroformylation reactor. Invention provides prolonged working life of catalyst due to prevention of its inactivation in stages for isolation of the end product.

EFFECT: improved preparing method.

11 cl, 3 tbl, 3 dwg, 2 ex

FIELD: industrial organic synthesis.

SUBSTANCE: invention relates to improved process for production of 2-ethylhexanal, which is raw material for production 2-ethylhexanoic acid and/or 2-ethylhexanol. Starting material of invention is bottom residue from rectification of butyl alcohols produced in oxo synthesis, from which bottom residue a fraction mainly containing saturated and unsaturated C8-alcohols with 5-15% of C12-acetals is isolated on two columns operated at column top residual pressure 50-90 mm Hg. This fraction is subjected to vapor-phase processing at atmospheric pressure on copper-containing catalyst at 200-300°C followed by rectification of catalysate on two columns to isolate, as first-column top distillate, fraction obtained at 20-50 mm Hg and containing light components and 2-ethylhexanal, which fraction is fed into second column operated at column top residual pressure 60-100 mm Hg to isolate distilled fraction containing light components and 30-60% of 2-ethylhexanal, whereas desired 2-ethylhexanal is recovered as bottom product or as product tapped from the side of bottom column section.

EFFECT: improved quality and yield of desired product.

2 cl, 14 ex

Up!