Differential

FIELD: transport.

SUBSTANCE: proposed differential comprises output shafts inter-articulated by at least one differential pinion. The latter is articulated with housing via at least one idle body, free revolving in said housing aligned with differential pinion geometrical axis. Differential pinion and idle body surfaces that fair are displaced with respect to differential pinion geometrical axis.

EFFECT: simplified design.

8 dwg

 

The present invention relates to the field of multi-threaded programs, in particular to a differential actuator driving axles and wheels of vehicles.

The well-known scheme cylindrical differential, where the average satellites, siteplease among themselves, made elliptical. When relative rotation axes and satellites gear ratio within one revolution of the elliptical satellites obtained variables. Such mechanisms when there is relative rotation axes create periodic increase in drag torque at the back wheel (Liferov AH "Differentials of automobiles and tractors", 1972, "engineering", Moscow, p.101).

Known differential elliptic satellites structurally complex and has a small blocking effect.

Also known bevel differential with a variable ratio of the firm Dikmen (USA), is selected as the closest analogue containing half-shaft gear connected to the gear engages at least one satellite, freely rotating on an axis, pine geometric axis of the satellite, fixed in the housing. In this differential, the gear teeth are made with a special profile. As a result, when the rotation of the satellite around its axis of its power shoulder in engagement with polovoy gear within steps of teeth C is constant. It alternately increases in mesh with one gear and decreases in engagement with the other. The power ratio between the axes within steps of the teeth is obtained variables (see ibid., p.101).

Known design differential complicated, since for the manufacture of gears with a variable transmission ratio, in particular for the manufacture of special profile of her teeth, requires special equipment and a small blocking effect because the increased leverage of the application of the moment of forces in the known construction is possible only on the size of the tooth.

The basis of the claimed invention is the task of creating a device implemented in the differentials vehicles, have a great range of the blocking effect and structurally simple.

This task is achieved by the fact that in the known differential output shaft kinematically connected, at least one satellite, according to the invention the satellite is connected with the housing via (via), at least one intermediate body which is free to rotate in the housing, coaxially with the geometrical axis of the satellite, and the mating surfaces of the satellite and the intermediate body is displaced relative to the geometric axis of the satellite.

The simplification of the structure both of which are paid by the manufacturing technology used in the inventive differential gears is simple, streamlined and does not require for its production of additional equipment.

In the inventive differential due to communication satellites with the housing, at least one intermediate body, which rotates freely in the housing coaxially with the geometrical axis of the satellite and kinematically connected to the satellite mating surfaces are displaced relative to the geometric axis of the satellite increases the blocking effect. This is achieved by displacement of the mating surfaces of the intermediate body and the satellite, creating the eccentricity, which gives an opportunity to significantly change the shoulder of the application of the moment of forces.

The design of the proposed differential provides for the free movement of the internal parts of the differential application of additional torque of opposite sign to one of the output shafts, but limits the possibility of running internal links stopped when one output shaft when a torque of the same sign. The increase of the blocking effect in the inventive differential is based on the change in the distribution of torque from the housing to an eccentric located the mating surfaces of the satellite and the intermediate body. The power and control the shoulder in engagement with pausetime gears unstable due to the eccentricity, it alternately increases in mesh with one gear, decreasing in engagement with the other. In a certain position Abrahamic surfaces relative to the housing of the torque from the housing through the intermediate body by means of displacement of the point of pressure prevents the rotation of the satellite. When driving on the road with different coupling qualities satellite of the proposed differential automatically occupies such a position that provides the necessary difference between the traction wheels and movement without slippage.

Hereinafter the present invention is illustrated by a detailed description of a specific variant of its performance with reference to the accompanying drawings.

Figure 1 is a kinematic diagram of the conical differential offset mating surfaces.

Figure 2 shows the kinematic diagram of a cylindrical differential offset mating surfaces.

Figure 3 is a longitudinal section of the inventive differential (option of the intermediate body in the form of a sleeve)

Figure 4 - cross section a-a figure 3.

Figure 5, 6, 7 - possible embodiments of the intermediate body in kinematic connection with the satellite sector, segment, etc.

On Fig - an embodiment of a satellite with two intermediate bodies (in the form of a sleeve).

The inventive eccentric differential ABIK (designation ABIK is what I abbreviation of the word Automatic Blocking of the Invention Kuzevanov) (3, 4) has a cylindrical housing 1, which consists of two halves rigidly bolted to the centering pins (not labeled). The housing 1 has two holes for the output shaft 2 and four radial, axial geometric axis satellites 3 holes, in which freely rotate, restricted against axial and radial displacement of the intermediate body 4, which in this particular example, the performance differential is sleeve (4)having an inner bore that is offset from the geometric axis of the satellites 3.

The output shaft 2 is connected with pausetime gears 5, which gear engages linked satellites 3, having an internal centering axis 6, coaxially with the geometrical axis of the satellites 3, provided in the hole of the centering element 7 that is not associated with the housing 1, which in this particular example is a square, and a member of the sleeve bore 4 of the outer axle 8 with eccentricity, coinciding with offset hole of the sleeve 4.

Does the differential as follows.

The distribution of the time from the housing 1 is carried out in the inventive differential across the intermediate body nut 4.

When you stop one of the output shaft 2, the torque from the housing 1 of the same sign is transmitted through the sleeve 4 on the offset axis of the satellite 3 and depending on the location of this axis occurs m the ment, opposing the rotation of the satellites 3. When additional torque on one of the output shaft 2, for example, when the overlapping wheels on the steering of the car or bypass obstacles, circumferential force on the satellite 3 doubles and 3 satellite rotates the offset axis of the sleeve 4 in the housing 1 differential.

It is advisable that the differential was four satellites to correct the offset of the geometric axis of the satellite 3 relative to the geometric axis of the intermediate body 4, dependent circular orientation shifted the mating surfaces of the satellite 3 and the intermediate body 4 when the differential Assembly.

In addition to performing the intermediate body in the form of a sleeve 4 there are various other embodiments of the configuration of its execution with the possibility of its rotation in the housing 1 coaxially with the geometrical axis of the satellite 3 (for example, truncated cone, a polyhedron, a sleeve with triangular equiaxial circuit and the like).

Other embodiments of the mating surfaces of the intermediate body 4 and the satellite 3, in addition to the cylindrical axis, for example cut-ledge in the form of a sector of a segment of an ellipse in the cylindrical hole, etc.

A possible embodiment of the differential satellite 3 with two intermediate bodies (4) bushings 4 (Fig).

Alternatively centering of satell the tov 3, having an internal opening, coaxially with the geometrical axis of the satellites 3, mating with the centering element 7 in the form of crosses, not connected with the housing 1.

The differential output shaft kinematically connected, at least one satellite, wherein the satellite is connected with the housing via at least one intermediate body which is free to rotate in the housing coaxially with the geometrical axis of the satellite, and the mating surfaces of the satellite and the intermediate body is displaced relative to the geometric axis of the satellite.



 

Same patents:

FIELD: machine building.

SUBSTANCE: invention relates to machine building, particularly to lock engines of differential. Mechanism of automatic blocking of differential consists of hydraulic pump with toothed wheels, two valves, isolated in open condition by springs and intermediate shafts with intermediate toothed wheels. Mechanism of hydraulic blocking of differential is in the space between differential pinion and axle shaft gear and is enclosed into case. Toothed wheels of hydraulic pump are blocked with two intermediate toothed wheels, which are engaged with other couple of intermediate toothed wheels. Intermediate toothed wheels are blocked to differential pinions. Casing is filled by working liquid for major part of its volume and by its journal bears on two bearings, compressed into semi-axial toothed wheels.

EFFECT: increasing of mechanism durability and providing of blocking of differential at growing of difference between number of revolutions of wheels.

3 dwg

FIELD: transport.

SUBSTANCE: invention relates to vehicle transmissions, particularly, to differentials with automatic wheels locking. The proposed differential comprises drive housing accommodating moving ball closed chains incorporating with half-axle components. The said components are fitted aligned on half-axles. The drive element represents a plate, the ball chains being fitted in the holders furnished with axles mounted in through slots of the drive housing at equal radial distance from the drive housing axis. The ball chains are arranged so as to allow the balls to pass along the variable-depth figurate paths arranged in symmetry on the flange opposite end faces. The said flanges seat on the aforesaid half-axle elements.

EFFECT: higher reliability, compact design.

6 cl, 6 dwg

FIELD: transport.

SUBSTANCE: proposed gearbox incorporates an input and output shafts running in bearings and a lay shaft arranged parallel to the said input and output shafts. The output and lay shafts are furnished with the supports in the gearbox housing intermediate wall. The input shaft rear end is fitted in the output shaft end. The input shaft comprises a reverse drive gear and three forward running gears made integral with the aforesaid shaft. The input shaft supports also dual-direction gear free running thereon and accommodating a two-position coupling. One driven gear runs free on the output shaft end, while two other driven gears are fitted on the output shaft unfixed with a three-position coupling arranged there between. Three drive gears, dual-direction gear and three forward running driven gears in mesh with the input and output shaft gears run on the lay shaft. The reverse gear is fitted unfixed on the lay shaft to engage with the additional reverse gear. The said lay shaft supports two unfixed three-position coupling seating between the lay shaft gears. Similar coupling is fitted on the output shaft end.

EFFECT: reduced metal input, higher efficiency.

2 dwg

FIELD: machine building.

SUBSTANCE: invention relates to vehicles, in particular to self-locking differential gears and can be used in both transfer box and wheel gears. The propose vehicle differential gear comprises the housing, final drive, differential gear housing with half shaft gears and cams fitted therein. The said half shaft gears are in mesh with differential pinions. The said cams are helically-cammed with half shaft gears to get in contact with the push rods furnished with rollers. The thrust bearing is fixed on the reduction gear housing, the bearing movable race features a cam-like surface to interact with push rod rollers. The bearing cage inner surface features helical grooves or a diametral bore with through holes. The coupling holds the cage down to the thrust bearing fixed race with the help of plate spring.

EFFECT: mechanical control over differential gear capable of distinguishing between slipping and normal operating conditions.

9 dwg

Bevel gear // 2341385

FIELD: transport.

SUBSTANCE: bevel gear contains casing (1) with opposite axle shaft gears (2, 3) axis of channel whereof forms acute angle with casing rotation axis of channel. On differential pinion axis (6) collets (10) are installed capable of shift along axis. Pinions (4, 5) engage with collets and penetrating into narrowed zone located between axle shaft gears are seized transmitting torque to stopped axle shaft gear and stopping slippage.

EFFECT: increase of bevel gear slippage properties.

5 dwg

FIELD: machine building.

SUBSTANCE: invention relates to transport machine building, in particular, to automotive and tractor driving axles. The self-locking differential incorporates housing (2), driven gear wheel (1), output half-axles (7), two free travel mechanisms, driving gear coupling (4) with end face trapezoidal teeth and two driven half-couplings with the like teeth rigidly coupled with the free travel mechanism driven cages (6). Gear coupling (4) with the end face trapezoidal teeth is linked with housing (2) to axially move. The distance along the axis between the tooth crests of one and the tooth space of the other driven half-coupling equals the axial distance between the driving coupling (4) crests. The number of end face teeth of each half-coupling is a multiple of the number of locking bodies (8) of the free travel mechanisms. Both such mechanisms are arranged so that, on cutting in, the driven half-coupling crests get aligned with the driving coupling (4) tooth spaces. The driven half-coupling and driving coupling (4) teeth feature an identical profile.

EFFECT: higher safety of vehicles and simpler design of self-locking differential.

2 dwg

FIELD: mechanic.

SUBSTANCE: the self-blocking differential contains a power-driven shell with lids, in which half shaft elements are placed coaxially and connected with the half shaft. The half shaft elements, on their external surface, have spiral grooves with a semi-circular cross-section, the direction of which is reverse to that of the spiral, rolling elements (balls) filling the closed channels in the power-driven shell, in chains. The closed channels contain working grooves open for inserting ball segments into the spiral grooves. The longitudinal bypass channels and the side return channels are formed by slots in the lids and cuts around the perimeter of the distribution washers installed on the half shaft elements. The distribution washers have a diameter equal to the working groove dimension.

EFFECT: increases reliability of self-blocking differential.

2 cl, 1 dwg

FIELD: mechanic.

SUBSTANCE: the self-blocking differential contains a power-driven shell with lids, in which half shaft elements are placed coaxially and connected with the half shaft. The half shaft elements, on their upper surface, have spiral channels running in a direction opposite the spiral, odd number of rolling elements (balls), one closed channel containing a working groove open for inserting ball segments into the spiral channels of the half shaft elements; a longitudinal return channel with dimensions equal to the ball diameter, connected by intermediate channels made in the lids of the power-driven shell. The outside surface of the intermediate channels in the longitudinal section has a radius equal to 1.25 diameters of the ball; and their wall, at the outlet to the zone of connection to the return channel, contains a straight section. In the lids, a slot with dimensions equal to those of the working groove is made for placement of spiral channels of the half shaft elements in the intermediate channels area.

EFFECT: increased reliability of self-blocking differential.

4 cl, 2 dwg

FIELD: transport engineering; vehicle transmissions.

SUBSTANCE: invention can be used in differential drives of vehicles with possibility of automatic wheel locking. Proposed self-locking differential of vehicle contains drive case accommodating axle-shaft members coupled with axle shafts and provided on outer surface semi-round in cross section screw grooves of opposite hand of helix, solids of revolution in form of balls filling, in chain, closed channels made in drive case and containing working grooves opened to dip ball segments into screws of axle-shaft members, longitudinal bypass channels and side return channels. Inner part of case consists of three parts. On extreme parts working grooves are made with opposite direction of helix relative to each other and to screw grooves of axle-shaft members. Middle part is made with width not exceeding diameter of balls and is furnished with through axial holes corresponding to size of diameter of balls. Angle of tilting of working and screw grooves to longitudinal axis is 74-76°. Side return channels in longitudinal section are made with sizes steplessly increasing from diameter of ball on ends of channels to 1.5 diameter of ball in central part of channels. Longitudinal bypass channels in cross section are made to size of diameter of ball, and inner side of channels is made at angle of 1-2° to center of bypass channel, with stepless transition in place of connection.

EFFECT: improved reliability and efficiency of locking.

4 cl, 3 dwg

FIELD: automotive industry.

SUBSTANCE: invention can be used in differential drives of wheeled vehicles made for automatic locking of wheels. Proposed self-locking differential of vehicle contains drive case 1 accommodating axle shaft-members 4, 5 arranged coaxially to each other and coupled with axle-shafts 2, 3. Said axle-shaft members are provided with helical grooves 6, 7 on outer surface with opposite hand of helix, solids of revolution in form of balls 8 filling in line at least one closed channel 10 made in drive case. Part of said channel is opened to dip segments of balls into helical grooves. Closed channel 10 is made rectangular in longitudinal section, with rounded off outer angles 12. Cross section of legs of rectangular closed channel is equal to diameter of balls 8. Number of balls in channel is odd.

EFFECT: simplified design of differential, reduced overall dimensions, increased manufacturability, strength and efficiency at self-locking.

4 dwg

FIELD: transport engineering.

SUBSTANCE: proposed differential has case 1 which accommodates coaxially installed axle-shafts of drive wheels, cages 7, 8, driven bushings 3, 4 with splines for connection with drive wheel axle-shafts coaxially installed in cages. Case 1 is made in form of cylindrical bushing on inner surface of which longitudinal wedging cavities for rollers 5, 6 are made. Each roller in each cavity can move along driven bushing from one wedging position into the other. Cages 7, 8 are made in form of hollow cylinders with rectangular holes on surface whose number corresponds to number of longitudinal wedging cavities for rollers. On end face surface of cages 7, 8 at least one slot is made on end face surface of one cage and hole with rigidly fitted-in pin on end face surface of other cage. Pin of one cage gets into slot of other cage forming movable link for angular displacement of cages in relatively opposite directions.

EFFECT: improved reliability, roadability and safety of vehicle.

5 dwg

Differential // 2267676

FIELD: mechanical engineering.

SUBSTANCE: differential comprises housing (1), cross-shaped or straight shaft (5) of satellites, a number of satellites (4), and gear pair (2) of semiaxles. When gears (2) of semiaxles cooperate with satellites (4) the gear ratio changes at least in two stages. The number of stages is multiple to the number of teeth in satellites (4) and gears (2) of the semiaxles.

EFFECT: expanded functional capabilities.

16 cl, 5 dwg, 1 tbl

Muscular drive // 2270780

FIELD: transport engineering; bicycles.

SUBSTANCE: invention is designed for devices automatically changing gear ratio without interruption of power flow. Proposed drive contains two differentials. Force sensor 5 is installed between input shaft 8 and common input of both differentials, namely power differential 1 and regulating second differential 2. Said force sensor 5 cuts in braking device 4 at rise of load, said braking devices is idling at direct drive and is connected with regulating input of second differential 2. As a result, output gear 21 of second differential 2 starts rotating and self-braking drive 3 releases carrier 25 of power differential 1. Proposed drive automatically changes over from direct drive to drive with changed gear ratio. Moment of changing over can be regulated by tensioner 6 of spring 19 of force sensor.

EFFECT: facilitated selection of step-down gear in wide range of gear ration depending on individual capabilities of user.

1 dwg

FIELD: mechanical engineering.

SUBSTANCE: invention relates to methods of control of differential locking of multidrive wheeled vehicles and it can be used at designing of systems to control tractive forces of driving wheels of multidrive vehicles and carrying out investigations of wheeled vehicles. proposed method of control of differential locks comes to locking of differential for definite periods of time at threshold values of mismatching of mechanical parameters of driving wheels intercoupled by said differential and unlocking differential at expiration of definite of time or at achievement of threshold value of steerability index. Unlocking of differentials at achievement of threshold value of steerability index is carried out individually, starting from differential whose locking has greater effect on steerability of wheeled vehicle.

EFFECT: enlarged range of control of traction forces on driving wheels to increase cross-country capacity and traction and speed properties at provision of required steerability of multidrive wheeled vehicles.

1 dwg

FIELD: transport engineering.

SUBSTANCE: invention can be used to increase cross-country capacity and stability of vehicle at braking. Proposed differential lock mechanism contains locking device in form of friction mechanism including two members 1 and 2. Friction mechanism consists of pack of friction disk 3 and steel disks 4, two control pistons 7, air feed head 8 with union 9. Members 1, 2 of clocking device are connected by pairs of gears 10, 11, 12, 13 with axle-shafts 14, 15. Device is furnished additionally with air fed control system consisting of angular velocity pickups 16, 17, electronic control unit 18, electromagnetic control valve 19, relief valve 20, change-over switch 21, connecting air lines and electric wires.

EFFECT: increased cross-country capacity and stability of vehicle.

2 dwg

FIELD: mechanical engineering; vehicle transmissions.

SUBSTANCE: proposed differential contains case 1, side gears 2, and 3, planet pinions and locking device. Locking devices is made in form of ring shifter 7 connected with drive 8, pushers 10 arranged inside axles 9 of planet pinions, intermediate members and locking members. Differential includes also elastic stop, and spring inserts 17 and 18 placed between case 1 and rear surfaces 20 and 21 of side gears 2 and 3. Grooves are made on end face front surfaces of side gears 2 and 3. Said grooves have wavy profile corresponding to profile of locking members, and number of radial grooves is even.

EFFECT: prevention of failure of differential lock caused by wedging of locking members between side gears, and falling out of locking members at unlocking, provision of stepless row of values of locking coefficient.

5 cl, 6 dwg

FIELD: automotive industry.

SUBSTANCE: invention can be used in differential drives of wheeled vehicles made for automatic locking of wheels. Proposed self-locking differential of vehicle contains drive case 1 accommodating axle shaft-members 4, 5 arranged coaxially to each other and coupled with axle-shafts 2, 3. Said axle-shaft members are provided with helical grooves 6, 7 on outer surface with opposite hand of helix, solids of revolution in form of balls 8 filling in line at least one closed channel 10 made in drive case. Part of said channel is opened to dip segments of balls into helical grooves. Closed channel 10 is made rectangular in longitudinal section, with rounded off outer angles 12. Cross section of legs of rectangular closed channel is equal to diameter of balls 8. Number of balls in channel is odd.

EFFECT: simplified design of differential, reduced overall dimensions, increased manufacturability, strength and efficiency at self-locking.

4 dwg

FIELD: transport engineering; vehicle transmissions.

SUBSTANCE: invention can be used in differential drives of vehicles with possibility of automatic wheel locking. Proposed self-locking differential of vehicle contains drive case accommodating axle-shaft members coupled with axle shafts and provided on outer surface semi-round in cross section screw grooves of opposite hand of helix, solids of revolution in form of balls filling, in chain, closed channels made in drive case and containing working grooves opened to dip ball segments into screws of axle-shaft members, longitudinal bypass channels and side return channels. Inner part of case consists of three parts. On extreme parts working grooves are made with opposite direction of helix relative to each other and to screw grooves of axle-shaft members. Middle part is made with width not exceeding diameter of balls and is furnished with through axial holes corresponding to size of diameter of balls. Angle of tilting of working and screw grooves to longitudinal axis is 74-76°. Side return channels in longitudinal section are made with sizes steplessly increasing from diameter of ball on ends of channels to 1.5 diameter of ball in central part of channels. Longitudinal bypass channels in cross section are made to size of diameter of ball, and inner side of channels is made at angle of 1-2° to center of bypass channel, with stepless transition in place of connection.

EFFECT: improved reliability and efficiency of locking.

4 cl, 3 dwg

FIELD: mechanic.

SUBSTANCE: the self-blocking differential contains a power-driven shell with lids, in which half shaft elements are placed coaxially and connected with the half shaft. The half shaft elements, on their upper surface, have spiral channels running in a direction opposite the spiral, odd number of rolling elements (balls), one closed channel containing a working groove open for inserting ball segments into the spiral channels of the half shaft elements; a longitudinal return channel with dimensions equal to the ball diameter, connected by intermediate channels made in the lids of the power-driven shell. The outside surface of the intermediate channels in the longitudinal section has a radius equal to 1.25 diameters of the ball; and their wall, at the outlet to the zone of connection to the return channel, contains a straight section. In the lids, a slot with dimensions equal to those of the working groove is made for placement of spiral channels of the half shaft elements in the intermediate channels area.

EFFECT: increased reliability of self-blocking differential.

4 cl, 2 dwg

FIELD: mechanic.

SUBSTANCE: the self-blocking differential contains a power-driven shell with lids, in which half shaft elements are placed coaxially and connected with the half shaft. The half shaft elements, on their external surface, have spiral grooves with a semi-circular cross-section, the direction of which is reverse to that of the spiral, rolling elements (balls) filling the closed channels in the power-driven shell, in chains. The closed channels contain working grooves open for inserting ball segments into the spiral grooves. The longitudinal bypass channels and the side return channels are formed by slots in the lids and cuts around the perimeter of the distribution washers installed on the half shaft elements. The distribution washers have a diameter equal to the working groove dimension.

EFFECT: increases reliability of self-blocking differential.

2 cl, 1 dwg

Up!