Self-blocking differential of vehicle

FIELD: mechanic.

SUBSTANCE: the self-blocking differential contains a power-driven shell with lids, in which half shaft elements are placed coaxially and connected with the half shaft. The half shaft elements, on their external surface, have spiral grooves with a semi-circular cross-section, the direction of which is reverse to that of the spiral, rolling elements (balls) filling the closed channels in the power-driven shell, in chains. The closed channels contain working grooves open for inserting ball segments into the spiral grooves. The longitudinal bypass channels and the side return channels are formed by slots in the lids and cuts around the perimeter of the distribution washers installed on the half shaft elements. The distribution washers have a diameter equal to the working groove dimension.

EFFECT: increases reliability of self-blocking differential.

2 cl, 1 dwg

 

The invention relates to vehicles and can be used in differential-drive vehicles made with automatic wheel lock.

Known self-locking differential of the vehicle selected by the applicant as a prototype containing the drive housing with lids, which coaxially to each other posted by related axes half-shaft elements having on the outer surface of the semicircular in cross section of the helical grooves of the opposite direction of the spiral, rolling elements in the form of balls, fill chain, made in the drive housing with the lid closed channels containing opened for dipping segments of the balls in the helical groove of the half-shaft of the linear working groove, the longitudinal bypass channel and side gorbalenya return channels made in the lids of the differential. Longitudinal bypass channel is made with a width greater than one and less than two diameters of the ball (see the description of the invention SU # 1507603 from. 7.11.87, publ. 15.09.89, UK 17/20, Century-Oaglsi).

The disadvantages of the prototype should include low reliability design conventional prefilled auto-disable differential due to the insufficient area of the contact surface of the balls from contacting surfaces in goreobsessed return is the analy, calling large load on the balls, where the load on the balls is increased by an order of magnitude higher than in other branches of the closed channel. The balls in the return channels are clamped between themselves and move by sliding (Hughes), which leads to dry friction, intense wear of the walls of the return grooves, increasing the gap between the balls, which, ultimately, leads to reduced life of conventional prefilled auto-disable differential.

The technical objective of the proposed solutions is to increase the reliability of conventional prefilled auto-disable differential of the vehicle and the efficiency of the block.

The problem is solved by performing a known conventional prefilled auto-disable differential of the vehicle containing the drive housing with lids, which coaxially to each other posted by related axes half-shaft elements having on the outer surface of the semicircular in cross section of the helical grooves of the opposite direction of the spiral, rolling elements in the form of balls, fill chain, made in the drive housing with the lid closed channels containing opened for dipping segments of the balls in the helical grooves of half-shaft elements working grooves, longitudinal by-pass channels and the side of the return channel, which according to the invention the side return channel is formed by grooves in the cover and which is a continuation of the helical grooves hollows, made around the perimeter of the established on the half-shaft elements distribution washers with a diameter in the size of the work performed.

The notches in the distribution washers made of a spherical shape to a depth of not less than 1/3 of the diameter of the ball.

The distribution of washers with hollows, part of the return channels, provides the passage of the balls of the path of return channels without slip, which significantly reduces the internal resistance in the chain of balls (with the passage side of the return channels) and increases the reliability of conventional prefilled auto-disable differential of the vehicle and the efficiency of the block as a whole.

Conducted patent studies have not found a similar technical solutions that allows to draw a conclusion about the novelty and inventive step of the claimed technical solution.

The domestic industry has all the resources (materials, equipment and technology)required to manufacture the inventive conventional prefilled auto-disable differential and its widespread application in vehicles.

The invention is illustrated by the drawing, which presents a limited-slip differential of the vehicle in longitudinal section.

A limited-slip differential vehicle comprises a drive housing 1 with what Riscani 2 and 3, which coaxially to each other placed associated with the axes 4 and 5 half-shaft elements 6 and 7, having on the outer surface, for example, three helical grooves 8 and 9 of the opposite direction of the spiral, rolling elements in the form of balls 10 size, for example, 20 mm, fill chain, made in the drive housing 1 with lids 2 and 3, three closed channel 11. Closed channels 11 contain opened for dipping segments of the balls 10 in the screw grooves 8 and 9 half-shafts elements 6 and 7 workers grooves 12, the longitudinal by-pass channels 13 and side return channels 14. Side return channels 14 are formed by the grooves 15 in the caps 2 and 3 and the slots 16, which is a continuation of the helical grooves 8 and 9 half-shafts elements 6 and 7, is made around the perimeter rigidly mounted on the half-shaft elements 6 and 7 distribution of washers 17 and 18, is made with a diameter in the size of the working grooves 12.

The notches 16 in the distribution washers 17 and 18 are made of a spherical shape to a depth of not less than 1/3 of the diameter of the ball 10.

A limited-slip differential works as follows. In straight-line motion of the vehicle on a good road torque from the propeller shaft through the main transmission (not shown) is transmitted to the housing 1 conventional prefilled auto-disable differential. Next torque through balls 10, contact the s with the workers of the grooves 12 of the housing 1 and the helical grooves 8 and 9 half-shafts elements 6 and 7, is transmitted to the shafts 4 and 5 of the vehicle and then drive wheels, providing them with the same angular velocity.

When turning the vehicle or contact one of the leading wheels of the vehicle on the rough road (pit or mound) wheels, and hence the shafts 4 and 5 with pausetime elements 6 and 7 begin to rotate at different angular velocities. While the 10 balls begin to move depending on the direction of rotation in one or the other side of the closed channel 11 on business grooves 12, and the balls 10 are in the notches 16 of the distribution of washers 17 or 18 (left or right)from which each ball 10 is pushed further by the balls 10, located in the helical grooves 8 or 9. The balls 10, while in the notches 16 of the distribution of washers 17 or 18, are part of the path from the return channel 14 without slip, which significantly reduces the internal resistance in the chain of balls 10. Of the grooves 16 distribution of washers 17 or 18 balls 10 are in grooves 15 in the cover 2 or 3 and then in the longitudinal by-pass channel 13.

As a result of the blocking effect, in which torque through the shafts 4 and 5 is transmitted to both wheels evenly, without impeding the rotation of the vehicle.

When you hit any of the drive wheel of the vehicle on slippery at the Astok of the road there is a sharp decrease of the clutch wheel with the road. Polovoy item 6 or 7, associated with the wheel that is in good contact with the road, trying to move the ball 10 in the closed channel 11 of the housing 1, causing to rotate the other polovoy element, and through him, and the wheel that is on the slippery area. And both wheels start to rotate at the same speed. The car continues to move without slipping.

The applicant made a prototype, which was tested on the bench with good performance.

1. A limited-slip differential vehicle containing the drive housing with lids, which coaxially to each other posted by related axes half-shaft elements having on the outer surface of the semicircular in cross section of the helical grooves of the opposite direction of the spiral, rolling elements in the form of balls, fill chain is made in the drive housing with the lid closed channels containing opened for dipping segments of the balls in the helical grooves of half-shaft elements working grooves, longitudinal by-pass channels and side return channels, characterized in that the side return channels are formed by grooves in the cover and which is a continuation of the helical grooves grooves made along the perimeter of the established on the half-shaft the elements of the distribution of washers with a diameter in the size of p is working grooves.

2. A limited-slip differential vehicle according to claim 1, characterized in that the hollow distribution spacers are spherical form to a depth of not less than 1/3 of the diameter of the ball.



 

Same patents:

FIELD: mechanic.

SUBSTANCE: the self-blocking differential contains a power-driven shell with lids, in which half shaft elements are placed coaxially and connected with the half shaft. The half shaft elements, on their upper surface, have spiral channels running in a direction opposite the spiral, odd number of rolling elements (balls), one closed channel containing a working groove open for inserting ball segments into the spiral channels of the half shaft elements; a longitudinal return channel with dimensions equal to the ball diameter, connected by intermediate channels made in the lids of the power-driven shell. The outside surface of the intermediate channels in the longitudinal section has a radius equal to 1.25 diameters of the ball; and their wall, at the outlet to the zone of connection to the return channel, contains a straight section. In the lids, a slot with dimensions equal to those of the working groove is made for placement of spiral channels of the half shaft elements in the intermediate channels area.

EFFECT: increased reliability of self-blocking differential.

4 cl, 2 dwg

FIELD: transport engineering; vehicle transmissions.

SUBSTANCE: invention can be used in differential drives of vehicles with possibility of automatic wheel locking. Proposed self-locking differential of vehicle contains drive case accommodating axle-shaft members coupled with axle shafts and provided on outer surface semi-round in cross section screw grooves of opposite hand of helix, solids of revolution in form of balls filling, in chain, closed channels made in drive case and containing working grooves opened to dip ball segments into screws of axle-shaft members, longitudinal bypass channels and side return channels. Inner part of case consists of three parts. On extreme parts working grooves are made with opposite direction of helix relative to each other and to screw grooves of axle-shaft members. Middle part is made with width not exceeding diameter of balls and is furnished with through axial holes corresponding to size of diameter of balls. Angle of tilting of working and screw grooves to longitudinal axis is 74-76°. Side return channels in longitudinal section are made with sizes steplessly increasing from diameter of ball on ends of channels to 1.5 diameter of ball in central part of channels. Longitudinal bypass channels in cross section are made to size of diameter of ball, and inner side of channels is made at angle of 1-2° to center of bypass channel, with stepless transition in place of connection.

EFFECT: improved reliability and efficiency of locking.

4 cl, 3 dwg

FIELD: automotive industry.

SUBSTANCE: invention can be used in differential drives of wheeled vehicles made for automatic locking of wheels. Proposed self-locking differential of vehicle contains drive case 1 accommodating axle shaft-members 4, 5 arranged coaxially to each other and coupled with axle-shafts 2, 3. Said axle-shaft members are provided with helical grooves 6, 7 on outer surface with opposite hand of helix, solids of revolution in form of balls 8 filling in line at least one closed channel 10 made in drive case. Part of said channel is opened to dip segments of balls into helical grooves. Closed channel 10 is made rectangular in longitudinal section, with rounded off outer angles 12. Cross section of legs of rectangular closed channel is equal to diameter of balls 8. Number of balls in channel is odd.

EFFECT: simplified design of differential, reduced overall dimensions, increased manufacturability, strength and efficiency at self-locking.

4 dwg

FIELD: mechanical engineering; vehicle transmissions.

SUBSTANCE: proposed differential contains case 1, side gears 2, and 3, planet pinions and locking device. Locking devices is made in form of ring shifter 7 connected with drive 8, pushers 10 arranged inside axles 9 of planet pinions, intermediate members and locking members. Differential includes also elastic stop, and spring inserts 17 and 18 placed between case 1 and rear surfaces 20 and 21 of side gears 2 and 3. Grooves are made on end face front surfaces of side gears 2 and 3. Said grooves have wavy profile corresponding to profile of locking members, and number of radial grooves is even.

EFFECT: prevention of failure of differential lock caused by wedging of locking members between side gears, and falling out of locking members at unlocking, provision of stepless row of values of locking coefficient.

5 cl, 6 dwg

FIELD: transport engineering.

SUBSTANCE: invention can be used to increase cross-country capacity and stability of vehicle at braking. Proposed differential lock mechanism contains locking device in form of friction mechanism including two members 1 and 2. Friction mechanism consists of pack of friction disk 3 and steel disks 4, two control pistons 7, air feed head 8 with union 9. Members 1, 2 of clocking device are connected by pairs of gears 10, 11, 12, 13 with axle-shafts 14, 15. Device is furnished additionally with air fed control system consisting of angular velocity pickups 16, 17, electronic control unit 18, electromagnetic control valve 19, relief valve 20, change-over switch 21, connecting air lines and electric wires.

EFFECT: increased cross-country capacity and stability of vehicle.

2 dwg

FIELD: mechanical engineering.

SUBSTANCE: invention relates to methods of control of differential locking of multidrive wheeled vehicles and it can be used at designing of systems to control tractive forces of driving wheels of multidrive vehicles and carrying out investigations of wheeled vehicles. proposed method of control of differential locks comes to locking of differential for definite periods of time at threshold values of mismatching of mechanical parameters of driving wheels intercoupled by said differential and unlocking differential at expiration of definite of time or at achievement of threshold value of steerability index. Unlocking of differentials at achievement of threshold value of steerability index is carried out individually, starting from differential whose locking has greater effect on steerability of wheeled vehicle.

EFFECT: enlarged range of control of traction forces on driving wheels to increase cross-country capacity and traction and speed properties at provision of required steerability of multidrive wheeled vehicles.

1 dwg

Muscular drive // 2270780

FIELD: transport engineering; bicycles.

SUBSTANCE: invention is designed for devices automatically changing gear ratio without interruption of power flow. Proposed drive contains two differentials. Force sensor 5 is installed between input shaft 8 and common input of both differentials, namely power differential 1 and regulating second differential 2. Said force sensor 5 cuts in braking device 4 at rise of load, said braking devices is idling at direct drive and is connected with regulating input of second differential 2. As a result, output gear 21 of second differential 2 starts rotating and self-braking drive 3 releases carrier 25 of power differential 1. Proposed drive automatically changes over from direct drive to drive with changed gear ratio. Moment of changing over can be regulated by tensioner 6 of spring 19 of force sensor.

EFFECT: facilitated selection of step-down gear in wide range of gear ration depending on individual capabilities of user.

1 dwg

Differential // 2267676

FIELD: mechanical engineering.

SUBSTANCE: differential comprises housing (1), cross-shaped or straight shaft (5) of satellites, a number of satellites (4), and gear pair (2) of semiaxles. When gears (2) of semiaxles cooperate with satellites (4) the gear ratio changes at least in two stages. The number of stages is multiple to the number of teeth in satellites (4) and gears (2) of the semiaxles.

EFFECT: expanded functional capabilities.

16 cl, 5 dwg, 1 tbl

FIELD: transport engineering.

SUBSTANCE: proposed differential has case 1 which accommodates coaxially installed axle-shafts of drive wheels, cages 7, 8, driven bushings 3, 4 with splines for connection with drive wheel axle-shafts coaxially installed in cages. Case 1 is made in form of cylindrical bushing on inner surface of which longitudinal wedging cavities for rollers 5, 6 are made. Each roller in each cavity can move along driven bushing from one wedging position into the other. Cages 7, 8 are made in form of hollow cylinders with rectangular holes on surface whose number corresponds to number of longitudinal wedging cavities for rollers. On end face surface of cages 7, 8 at least one slot is made on end face surface of one cage and hole with rigidly fitted-in pin on end face surface of other cage. Pin of one cage gets into slot of other cage forming movable link for angular displacement of cages in relatively opposite directions.

EFFECT: improved reliability, roadability and safety of vehicle.

5 dwg

The invention relates to the field of engineering, in particular to driving axles for cars and motorcycles supplied by the differential mechanisms to ensure non-rigid kinematic connection between the two wheels of the axle

FIELD: mechanic.

SUBSTANCE: the self-blocking differential contains a power-driven shell with lids, in which half shaft elements are placed coaxially and connected with the half shaft. The half shaft elements, on their upper surface, have spiral channels running in a direction opposite the spiral, odd number of rolling elements (balls), one closed channel containing a working groove open for inserting ball segments into the spiral channels of the half shaft elements; a longitudinal return channel with dimensions equal to the ball diameter, connected by intermediate channels made in the lids of the power-driven shell. The outside surface of the intermediate channels in the longitudinal section has a radius equal to 1.25 diameters of the ball; and their wall, at the outlet to the zone of connection to the return channel, contains a straight section. In the lids, a slot with dimensions equal to those of the working groove is made for placement of spiral channels of the half shaft elements in the intermediate channels area.

EFFECT: increased reliability of self-blocking differential.

4 cl, 2 dwg

FIELD: transport engineering; mechanical engineering.

SUBSTANCE: planetary gear driven in two-speed final drive of axle is installed in drive pinion case. Ring gear 23 is mounted on hub 24 made integral with clutch member 26 for rotation relate to hub 10 of carrier and is made for connection by clutch 27 with clutch member 32 belonging to case 14. Carrier hub 10 is constantly coupled by connecting clutch 8 with driven shaft and it is arranged coaxially to drive and driven shafts. Connecting clutch 8 has external teeth 9 engaging with teeth of clutch 27 connecting driven and drive shafts with ring gear hub. Drive shaft 15 is installed on additional bearing 17 fitted in bore 18 of driven shaft 3. Hub 24 ring gear with clutch member 26 is installed on bearing resting on carrier hub.

EFFECT: slowed down speeds, increased cross-country capacity of vehicle.

3 cl, 1 dwg

FIELD: transport engineering; vehicle transmissions.

SUBSTANCE: invention can be used in differential drives of vehicles with possibility of automatic wheel locking. Proposed self-locking differential of vehicle contains drive case accommodating axle-shaft members coupled with axle shafts and provided on outer surface semi-round in cross section screw grooves of opposite hand of helix, solids of revolution in form of balls filling, in chain, closed channels made in drive case and containing working grooves opened to dip ball segments into screws of axle-shaft members, longitudinal bypass channels and side return channels. Inner part of case consists of three parts. On extreme parts working grooves are made with opposite direction of helix relative to each other and to screw grooves of axle-shaft members. Middle part is made with width not exceeding diameter of balls and is furnished with through axial holes corresponding to size of diameter of balls. Angle of tilting of working and screw grooves to longitudinal axis is 74-76°. Side return channels in longitudinal section are made with sizes steplessly increasing from diameter of ball on ends of channels to 1.5 diameter of ball in central part of channels. Longitudinal bypass channels in cross section are made to size of diameter of ball, and inner side of channels is made at angle of 1-2° to center of bypass channel, with stepless transition in place of connection.

EFFECT: improved reliability and efficiency of locking.

4 cl, 3 dwg

FIELD: automotive industry.

SUBSTANCE: invention can be used in differential drives of wheeled vehicles made for automatic locking of wheels. Proposed self-locking differential of vehicle contains drive case 1 accommodating axle shaft-members 4, 5 arranged coaxially to each other and coupled with axle-shafts 2, 3. Said axle-shaft members are provided with helical grooves 6, 7 on outer surface with opposite hand of helix, solids of revolution in form of balls 8 filling in line at least one closed channel 10 made in drive case. Part of said channel is opened to dip segments of balls into helical grooves. Closed channel 10 is made rectangular in longitudinal section, with rounded off outer angles 12. Cross section of legs of rectangular closed channel is equal to diameter of balls 8. Number of balls in channel is odd.

EFFECT: simplified design of differential, reduced overall dimensions, increased manufacturability, strength and efficiency at self-locking.

4 dwg

FIELD: transport engineering.

SUBSTANCE: invention relates to vehicle transmission and brake system control mechanisms. According to proposed method of driving wheel slip control, center differential is locked by acting onto brakes of driving wheels and (or) changing engine torque at moment of beginning of decreasing of torque transmitted to slipping wheels accompanied by reduction of wheel rolling radius. For this purpose, differential locking device contains hydraulic lock clutch, brush unit 5, high voltage unit 6 and control system including control unit 7 and angular velocity pickup 8, torque pickup 9, linear speed pickup 10 and steering wheel turning angle pickup 11 interconnected by electric circuits. Electrorheologic liquid is used as working liquid. Clutch members are isolated from each other.

EFFECT: improved efficiency of driving wheel slipping control and operation of differential locking control system.

3 cl, 1 dwg

FIELD: automotive engineering.

SUBSTANCE: proposed driving axle reduction gear without externally controlled lock mechanism includes complex final drive with under drive and differential. Drive installed between each output gear of differential and wheel is made as overdrive, i.e. increasing speed of rotation of driving axle transmitted from differential to wheel.

EFFECT: increased cross-country capacity of vehicle.

2 dwg

FIELD: mechanical engineering; vehicle transmissions.

SUBSTANCE: proposed differential contains case 1, side gears 2, and 3, planet pinions and locking device. Locking devices is made in form of ring shifter 7 connected with drive 8, pushers 10 arranged inside axles 9 of planet pinions, intermediate members and locking members. Differential includes also elastic stop, and spring inserts 17 and 18 placed between case 1 and rear surfaces 20 and 21 of side gears 2 and 3. Grooves are made on end face front surfaces of side gears 2 and 3. Said grooves have wavy profile corresponding to profile of locking members, and number of radial grooves is even.

EFFECT: prevention of failure of differential lock caused by wedging of locking members between side gears, and falling out of locking members at unlocking, provision of stepless row of values of locking coefficient.

5 cl, 6 dwg

FIELD: transport engineering.

SUBSTANCE: invention can be used to increase cross-country capacity and stability of vehicle at braking. Proposed differential lock mechanism contains locking device in form of friction mechanism including two members 1 and 2. Friction mechanism consists of pack of friction disk 3 and steel disks 4, two control pistons 7, air feed head 8 with union 9. Members 1, 2 of clocking device are connected by pairs of gears 10, 11, 12, 13 with axle-shafts 14, 15. Device is furnished additionally with air fed control system consisting of angular velocity pickups 16, 17, electronic control unit 18, electromagnetic control valve 19, relief valve 20, change-over switch 21, connecting air lines and electric wires.

EFFECT: increased cross-country capacity and stability of vehicle.

2 dwg

FIELD: automotive industry.

SUBSTANCE: automatically locking equalizing differential comprises housing made of two members, speeder interposed between the members of the housing, and four satellites mounted on the pins of the speeder. The satellites are connected with two conical pinions mounted on the cylindrical bushings. The cylindrical bushings cooperates with the semiaxles by means of inner slots. The semiaxles are connected with the locking disk and centering springs by means of screw.

EFFECT: enhanced off-road capability.

2 dwg

FIELD: transport engineering; mechanical and hydromechanical transmissions of track vehicles with reduction gear type steering gears.

SUBSTANCE: proposed transmission of track vehicle has nonreversible gearbox 1 whose input shaft 2 is coupled with driving gear 3 of final drive 4. Driven gear 5 of final drive 4 is rigidly and coaxially installed on driving drum 6 of steering gear, being in constant meshing with driving gear 3. Four planetary three-member mechanisms are coaxially installed driving drum 6. Two similar internal planetary mechanisms with single-rim planet pinions include sun gears 7 and 8, carriers 9 and 10 and epicyclical gears 11 and 12. Carrier 9 and epicyclical gear 12 are interconnected and connected with driven shaft 13 of steering mechanism. Carrier 10 and epicyclical gear 11 are interconnected and are connected with driven shaft 14 of steering mechanism. Two similar external planetary mechanisms with two-rim planet pinions include sun gears 15 and 16, carriers 17 and 18 and epicyclical gears 19 and 20. sun gears 7 and 15 are rigidly interconnected and are connected with driving drum 6 by means of controlled friction clutch 21. Sun gears 8 and 16 are rigidly interconnected and are connected with driving drum 6 by means of controlled friction clutch 22. Sun gears 7 and 15 are furnished with controlled steering brake 23, and sun gears 8 and 16 are furnished with controlled steering brake 24. carriers 17 and 18 of external planetary mechanisms are provided with two support brakes 25 and 26. Epicyclical gears 19 and 20 of external planetary mechanisms are rigidly and coaxially secured on driving drum 6. Driven shafts 13 and 14 of steering gear are furnished with stop brakes 27 and 28 and are connected with driving wheels 31 and 32 of vehicle through track reduction units 29 and 30.

EFFECT: possibility of turning in any direction at minimum radius, simplified design of gearbox, provision of complete reversing.

1 dwg

FIELD: transport engineering; transmissions of wheeled vehicles.

SUBSTANCE: proposed differential lock control system contains fluid medium supply source with reducing 7, three-position distributor 11, two-chamber cylinder consisting of control space A of lock-up clutch 4 formed by its housing and movable partition 34, and additional diaphragm chamber 6 having its control space Б arranged coaxially and in series relative to control space of lock-up clutch 4. Movable partition 34 is connected with pressure disk 29 by means of rod 30 rigidly connected by one end with pressure disk 29. Rod 30 interacts with diaphragm 32 of additional diaphragm chamber 6, and it passes in its middle part through central part of movable partition 34, being rigidly connected with support plate 33 interacting with partition 34. Space Б of additional diaphragm chamber 6 communicates with three-position distributor 11 selectively communicating said spaces with drain main line 14 and reducing regulated valve 7.

EFFECT: increased capacity owing to automatic reduction of locking at cornering of vehicle and decreased skidding of leading wheel.

2 dwg

Up!