(H01S5/065)

H   Electricity(227141)
H01   Basic electric elements(70435)
H01S5        Semiconductor lasers(186)
H01S5/065                     (4)

Semiconductor infrared source (versions) // 2465699
FIELD: physics.SUBSTANCE: semiconductor infrared source includes a semiconductor substrate (1) with two optically connected and geometrically spaced-apart disc resonators (2) or annular resonators (10) in form of a heterostructure. On the surface of the semiconductor substrate (1) lying opposite the surface with the disc resonators (2) or annular resonators (10) there a first ohmic contact (3). A second ohmic contact (8) is deposited on the face of the corresponding disc resonator (2) or annular resonator (10). The distance from the outer edge of the second contact to the inner edge of the resonator is not more than 100 mcm. The disc resonators (2) or annular resonators (10) lie from each other at a distance L or overlap in the region of waveguides at a depth D, said distance and depth satisfying certain relationships.EFFECT: simple design and reducing optical loss during single-mode oscillation in the middle infrared spectrum.2 cl, 14 dwg

Injection laser // 2444101
FIELD: physics.SUBSTANCE: heterostructure-based laser has a waveguide layer enclosed between wide-gap emitters with p and n conductivity type, which are simultaneously bounding layers, an active region consisting of quantum size active layer, an optical Fabry-Perot resonator and a strip ohmic contact with an injection region underneath. In the waveguide layer outside the injection region there is a doped region, where the optical limiting factor of the closed mode in the doped region and concentration of free charge carriers in the doped region satisfy the relationship: where: is the value of the component of the optical limiting factor GY in the amplification region for the closed mode, arbitrary units; is the mode loss at the output of the Fabry-Perot resonator, cm-1; αi is loss due to absorption on free charge carriers in the amplification region, cm-1; Δα denotes losses associated with closed mode radiation scattering on irregularities (αSC), inter-band absorption (αBGL) and absorption on free charge carriers in lateral parts of the injection laser, cm-1; is the closed mode optical limiting factor in the doped region, arbitrary units; n, p denote concentration of free electrons and holes in the doped region, respectively, cm-3; σn, σp denote the absorption cross-section on free electrons and holes in the doped region, respectively, cm2.EFFECT: high optical power output in both continuous and pulsed modes of current pumping, high stability of the output optical power.13 cl, 5 dwg

Injection laser // 2443044
FIELD: optics.SUBSTANCE: heterostructure based laser contains waveguide layer placed between wide-gap emitters of p and n-conductivity type that are simultaneously the limiting layers, active zone consisting of quantum-dimensional active layer, optical Fabry-Perot cavity and stripe ohmic contact under which the injection zone is located. In the waveguide layer outside the injection area there is the introduction of the area of semiconductor material with the width of energy gap that is less than the width of energy gap of active area. The factor of optical confinement of closed mode of abovementioned semiconductor material fits the ratio: where: - values of the compounds of optical confinement factor G for closed mode in the introduced area of semiconductor material with the width of energy gap that is less than the width of energy gap of active area, relative units; αNB - optical losses related to interband absorption of closed mode radiation in the introduced area of semiconductor material with the width of energy gap that is less than the width of energy gap of active area, cm-1.EFFECT: increase of output optic power in both continuous and pulse current injection mode, as well as increased time stability of output active power.13 cl, 4 dwg

Semiconductor laser // 2408119
FIELD: physics.SUBSTANCE: semiconductor laser has a heterostructure in form of a thin plane-parallel plate, two mirrors which form an optical resonator having an optical axis and lying on both sides of the heterostructure, and pumping apparatus. Using the pumping apparatus, a volume is excited in the heterostructure, having a dimension along the axis of the resonator which is considerably smaller than across the axis of the resonator. The optical resonator has at least one extra absorbing layer in which nonequilibrium-carrier recombination takes place. The extra absorbing layer lies perpendicular the optical axis in the resonator mode unit, whose wavelength lies on the maximum of the spectrum of optical amplification of the heterostructure. Said absorbing layer absorbs spontaneous radiation propagating at an angle to the optical axis outside the fundamental mode of the resonator.EFFECT: increase in power of the laser owing increase in cross dimensions of the excitation region.32 cl, 1 dwg
 
2551170.
Up!